A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery

In robotic single-port surgery, it is desirable for a manipulator to exhibit the property of variable stiffness. Small-port incisions may require both high flexibility of the manipulator for safety purposes, as well as high structural stiffness for operational precision and high payload capability....

Full description

Bibliographic Details
Main Authors: Kim, Yong-Jae, Cheng, Shanbao, Kim, Sangbae, Iagnemma, Karl
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2015
Online Access:http://hdl.handle.net/1721.1/98275
https://orcid.org/0000-0002-0218-6801
Description
Summary:In robotic single-port surgery, it is desirable for a manipulator to exhibit the property of variable stiffness. Small-port incisions may require both high flexibility of the manipulator for safety purposes, as well as high structural stiffness for operational precision and high payload capability. This paper presents a new hyperredundant tubular manipulator with a variable neutral-line mechanisms and adjustable stiffness. A unique asymmetric arrangement of the tendons and the links realizes both articulation of the manipulator and continuous stiffness modulation. This asymmetric motion of the manipulator is compensated by a novel actuation mechanism without affecting its structural stiffness. The paper describes the basic mechanics of the variable neutral-line manipulator, and its stiffness characteristics. Simulation and experimental results verify the performance of the proposed mechanism.