The Power of Optimization Over Randomization in Designing Experiments Involving Small Samples
Random assignment, typically seen as the standard in controlled trials, aims to make experimental groups statistically equivalent before treatment. However, with a small sample, which is a practical reality in many disciplines, randomized groups are often too dissimilar to be useful. We propose an a...
Autores principales: | Johnson, Mac, Kallus, Nathan, Bertsimas, Dimitris J |
---|---|
Otros Autores: | Massachusetts Institute of Technology. Operations Research Center |
Formato: | Artículo |
Lenguaje: | en_US |
Publicado: |
Institute for Operations Research and the Management Sciences (INFORMS)
2015
|
Acceso en línea: | http://hdl.handle.net/1721.1/98509 https://orcid.org/0000-0003-1672-0507 https://orcid.org/0000-0002-1985-1003 |
Ejemplares similares
-
Robust sample average approximation
por: Gupta, Vishal, et al.
Publicado: (2018) -
From Predictive to Prescriptive Analytics
por: Bertsimas, Dimitris, et al.
Publicado: (2021) -
Data-driven robust optimization
por: Gupta, Vishal, et al.
Publicado: (2018) -
Stable regression: On the power of optimization over randomization in training regression problems
por: Bertsimas, Dimitris J, et al.
Publicado: (2022) -
Stable regression: On the power of optimization over randomization in training regression problems
por: Bertsimas, D, et al.
Publicado: (2021)