Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions

Thesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2015.

Bibliographic Details
Main Author: Tracy, Ian P
Other Authors: Victor Wong.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/98583
_version_ 1811075964526919680
author Tracy, Ian P
author2 Victor Wong.
author_facet Victor Wong.
Tracy, Ian P
author_sort Tracy, Ian P
collection MIT
description Thesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2015.
first_indexed 2024-09-23T10:14:12Z
format Thesis
id mit-1721.1/98583
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T10:14:12Z
publishDate 2015
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/985832022-01-31T19:12:28Z Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions Tracy, Ian P Victor Wong. Massachusetts Institute of Technology. Department of Mechanical Engineering. Massachusetts Institute of Technology. Engineering Systems Division Massachusetts Institute of Technology. Department of Mechanical Engineering Massachusetts Institute of Technology. Technology and Policy Program Engineering Systems Division. Technology and Policy Program. Mechanical Engineering. Thesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2015. Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 74-75). Numerical and experimental studies were performed on an internal combustion engine power cylinder wall's lubricating oil film in order to assess the possibility of tailoring engine lubricants to specific engine configurations and operating conditions for significantly enhanced fuel economy without an accompanying increase in engine wear. An array of different base oil viscosity modifier type combinations were developed, tested, and analyzed in order to seek trends that link lubricant mixtures to certain rheological behaviors along the cylinder wall of a fired internal combustion engine. Viscosity modifiers were applied in an unconventional manner so as to increase viscosity at high operating temperatures rather than decreasing viscosity at low temperatures for promoting reliable cold-cranking. Consequently, a novel form of multi-grade lubricant was developed and simulated for determining potential fuel economy gains through its use. Both numerical simulation and a physical, laser-induced fluorescence diagnostic apparatus for an Isuzu 4JJ1 light-duty diesel engine were implemented in parallel to aid the development and validation of a reliable engine friction and wear model. Preliminary results have been insightful and coincident with classical continuum mechanics theory. Internal consistency across the developed model and physical diagnostics was considerable. It is concluded that the tailoring of lubricant formulations can realize substantial fuel economy gains, and that oil & gas companies may realize significant competitive advantage and profit should they successfully inspire customers to consider purchasing lubricants that have been designed specifically for their automobile and driving habits. It is further proposed that the standards associated with lubricant classification be improved so as to consider the use of viscosity modifiers as mitigators of engine power cylinder wear at high cylinder temperatures near top dead center (TDC). by Ian P. Tracy. S.M. in Technology and Policy S.M. 2015-09-17T17:44:18Z 2015-09-17T17:44:18Z 2015 2015 Thesis http://hdl.handle.net/1721.1/98583 921140910 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 x, 82 pages application/pdf Massachusetts Institute of Technology
spellingShingle Engineering Systems Division.
Technology and Policy Program.
Mechanical Engineering.
Tracy, Ian P
Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions
title Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions
title_full Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions
title_fullStr Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions
title_full_unstemmed Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions
title_short Enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions
title_sort enhanced engine mechanical efficiency through tailoring of lubricant formulations to localized power cylinder wall conditions
topic Engineering Systems Division.
Technology and Policy Program.
Mechanical Engineering.
url http://hdl.handle.net/1721.1/98583
work_keys_str_mv AT tracyianp enhancedenginemechanicalefficiencythroughtailoringoflubricantformulationstolocalizedpowercylinderwallconditions