Biologically-templated metal oxide and metal nanostructures for photovoltaic applications

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2015.

Bibliographic Details
Main Author: Dorval Courchesne, Noémie-Manuelle
Other Authors: Paula T. Hammond and Angela M. Belcher.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2015
Subjects:
Online Access:http://hdl.handle.net/1721.1/98705
_version_ 1826217703004700672
author Dorval Courchesne, Noémie-Manuelle
author2 Paula T. Hammond and Angela M. Belcher.
author_facet Paula T. Hammond and Angela M. Belcher.
Dorval Courchesne, Noémie-Manuelle
author_sort Dorval Courchesne, Noémie-Manuelle
collection MIT
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2015.
first_indexed 2024-09-23T17:07:49Z
format Thesis
id mit-1721.1/98705
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T17:07:49Z
publishDate 2015
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/987052019-04-11T13:09:04Z Biologically-templated metal oxide and metal nanostructures for photovoltaic applications Dorval Courchesne, Noémie-Manuelle Paula T. Hammond and Angela M. Belcher. Massachusetts Institute of Technology. Department of Chemical Engineering. Massachusetts Institute of Technology. Department of Chemical Engineering. Chemical Engineering. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2015. Cataloged from PDF version of thesis. Vita. Page 296 blank. Includes bibliographical references. In several electronic, electrochemical and photonic systems, the organization of materials at the nanoscale is critical. Specifically, in nanostructured heterojunction solar cells, active materials with high surface area and continuous shapes tend to improve charge transport and collection, and to minimize recombination. Organizing nanoparticles, quantum dots or organic molecules intro three-dimensional structures can thus improve device efficiency. To do so, biotemplates with a wide variety of shapes and length scales can be used to nucleate nanoparticles and to organize them into complex structures. In this work, we have used microorganisms as templates to assemble metal oxide and metal nano- and microstructures that can enhance the performance of photovoltaic devices. First, we used M13 bacteriophages for their high aspect ratio and ability to bind noble metal nanoparticles, to create plasmonic nanowire arrays. We developed a novel process to assemble bacteriophages into nanoporous thin films via layer-by-layer assembly, and we mineralized the structure with titania. The resulting porous titania network was infiltrated with lead sulfide quantum dots to construct functional solar cells. We then used this system as a platform to study the effects of morphology and plasmonics on device performance, and observed significant improvements in photocurrent for devices containing bacteriophages. Next, we developed a process to magnesiothermally reduce biotemplated and solution-processed metal oxide structures into useful metallic materials that cannot be otherwise synthesized in solution. We applied the process to the synthesis of silicon nanostructures for use as semiconductors or photoactive materials. As starting materials, we obtained diatomaceous earth, a natural source of biotemplated silica, and we also mineralized M13 bacteriophages with silica to produce porous nanonetworks, and Spirulina major, a spiral-shaped algae, to produce micro-coils. We successfully reduced all silica structures to nanocrystalline silicon while preserving their shape. Overall, this work provides insights into incorporating biological materials in energy-related devices, doping materials to create semiconductors, characterizing their morphology and composition, and measuring their performance. The versatility and simplicity of the bottom-up assembly processes described here could contribute to the production of more accessible and inexpensive nanostructured energy conversion devices. by Noémie-Manuelle Dorval Courchesne. Ph. D. 2015-09-17T19:06:16Z 2015-09-17T19:06:16Z 2015 2015 Thesis http://hdl.handle.net/1721.1/98705 920689639 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 296 pages application/pdf Massachusetts Institute of Technology
spellingShingle Chemical Engineering.
Dorval Courchesne, Noémie-Manuelle
Biologically-templated metal oxide and metal nanostructures for photovoltaic applications
title Biologically-templated metal oxide and metal nanostructures for photovoltaic applications
title_full Biologically-templated metal oxide and metal nanostructures for photovoltaic applications
title_fullStr Biologically-templated metal oxide and metal nanostructures for photovoltaic applications
title_full_unstemmed Biologically-templated metal oxide and metal nanostructures for photovoltaic applications
title_short Biologically-templated metal oxide and metal nanostructures for photovoltaic applications
title_sort biologically templated metal oxide and metal nanostructures for photovoltaic applications
topic Chemical Engineering.
url http://hdl.handle.net/1721.1/98705
work_keys_str_mv AT dorvalcourchesnenoemiemanuelle biologicallytemplatedmetaloxideandmetalnanostructuresforphotovoltaicapplications