De novo ChIP-seq analysis

Methods for the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data start by aligning the short reads to a reference genome. While often successful, they are not appropriate for cases where a reference genome is not available. Here we develop methods for de novo analysis of ChIP-seq...

Full description

Bibliographic Details
Main Authors: He, Xin, Cicek, A. Ercument, Wang, Yuhao, Schulz, Marcel H., Le, Hai-Son, Bar-Joseph, Ziv
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:English
Published: BioMed Central 2015
Online Access:http://hdl.handle.net/1721.1/98902
https://orcid.org/0000-0002-3430-6943
_version_ 1826210871952539648
author He, Xin
Cicek, A. Ercument
Wang, Yuhao
Schulz, Marcel H.
Le, Hai-Son
Bar-Joseph, Ziv
author2 Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
author_facet Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
He, Xin
Cicek, A. Ercument
Wang, Yuhao
Schulz, Marcel H.
Le, Hai-Son
Bar-Joseph, Ziv
author_sort He, Xin
collection MIT
description Methods for the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data start by aligning the short reads to a reference genome. While often successful, they are not appropriate for cases where a reference genome is not available. Here we develop methods for de novo analysis of ChIP-seq data. Our methods combine de novo assembly with statistical tests enabling motif discovery without the use of a reference genome. We validate the performance of our method using human and mouse data. Analysis of fly data indicates that our method outperforms alignment based methods that utilize closely related species.
first_indexed 2024-09-23T14:56:48Z
format Article
id mit-1721.1/98902
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T14:56:48Z
publishDate 2015
publisher BioMed Central
record_format dspace
spelling mit-1721.1/989022022-09-29T11:34:55Z De novo ChIP-seq analysis He, Xin Cicek, A. Ercument Wang, Yuhao Schulz, Marcel H. Le, Hai-Son Bar-Joseph, Ziv Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Wang, Yuhao Methods for the analysis of chromatin immunoprecipitation sequencing (ChIP-seq) data start by aligning the short reads to a reference genome. While often successful, they are not appropriate for cases where a reference genome is not available. Here we develop methods for de novo analysis of ChIP-seq data. Our methods combine de novo assembly with statistical tests enabling motif discovery without the use of a reference genome. We validate the performance of our method using human and mouse data. Analysis of fly data indicates that our method outperforms alignment based methods that utilize closely related species. 2015-09-24T17:52:22Z 2015-09-24T17:52:22Z 2015-09 2015-06 2015-09-24T03:41:56Z Article http://purl.org/eprint/type/JournalArticle 1474-760X http://hdl.handle.net/1721.1/98902 He, Xin, A. Ercument Cicek, Yuhao Wang, Marcel H. Schulz, Hai-Son Le, and Ziv Bar-Joseph. "De novo ChIP-seq analysis." Genome Biology. 2015 Sep 23;16(1):205. https://orcid.org/0000-0002-3430-6943 en http://dx.doi.org/10.1186/s13059-015-0756-4 Genome Biology He et al. application/pdf BioMed Central
spellingShingle He, Xin
Cicek, A. Ercument
Wang, Yuhao
Schulz, Marcel H.
Le, Hai-Son
Bar-Joseph, Ziv
De novo ChIP-seq analysis
title De novo ChIP-seq analysis
title_full De novo ChIP-seq analysis
title_fullStr De novo ChIP-seq analysis
title_full_unstemmed De novo ChIP-seq analysis
title_short De novo ChIP-seq analysis
title_sort de novo chip seq analysis
url http://hdl.handle.net/1721.1/98902
https://orcid.org/0000-0002-3430-6943
work_keys_str_mv AT hexin denovochipseqanalysis
AT cicekaercument denovochipseqanalysis
AT wangyuhao denovochipseqanalysis
AT schulzmarcelh denovochipseqanalysis
AT lehaison denovochipseqanalysis
AT barjosephziv denovochipseqanalysis