Miniaturized Low-Voltage Power Converters With Fast Dynamic Response
This paper demonstrates a two-stage approach for power conversion that combines the strengths of variable-topology switched capacitor techniques (small size and light-load performance) with the regulation capability of magnetic switch-mode power converters. The proposed approach takes advantage of t...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2015
|
Online Access: | http://hdl.handle.net/1721.1/99109 https://orcid.org/0000-0002-4865-2724 https://orcid.org/0000-0002-0746-6191 |
Summary: | This paper demonstrates a two-stage approach for power conversion that combines the strengths of variable-topology switched capacitor techniques (small size and light-load performance) with the regulation capability of magnetic switch-mode power converters. The proposed approach takes advantage of the characteristics of complementary metal-oxide-semiconductor (CMOS) processes, and the resulting designs provide excellent efficiency and power density for low-voltage power conversion. These power converters can provide low-voltage outputs over a wide input voltage range with very fast dynamic response. Both design and fabrication considerations for highly integrated CMOS power converters using this architecture are addressed. The results are demonstrated in a 2.4-W dc-dc converter implemented in a 180-nm CMOS IC process and co-packaged with its passive components for high performance. The power converter operates from an input voltage of 2.7-5.5 V with an output voltage of ≤1.2 V, and achieves a 2210 W/in[superscript 3] power density with ≥80% efficiency. |
---|