Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data

In this Note we extend the Empirical Interpolation Method (EIM) to a regression context which accommodates noisy (experimental) data on an underlying parametric manifold. The EIM basis functions are computed Offline from the noise-free manifold; the EIM coefficients for any function on the manifold...

Full description

Bibliographic Details
Main Authors: Patera, Anthony T., Ronquist, Einar M.
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: Elsevier 2015
Online Access:http://hdl.handle.net/1721.1/99385
https://orcid.org/0000-0002-2631-6463
_version_ 1826206039460020224
author Patera, Anthony T.
Ronquist, Einar M.
author2 Massachusetts Institute of Technology. Department of Mechanical Engineering
author_facet Massachusetts Institute of Technology. Department of Mechanical Engineering
Patera, Anthony T.
Ronquist, Einar M.
author_sort Patera, Anthony T.
collection MIT
description In this Note we extend the Empirical Interpolation Method (EIM) to a regression context which accommodates noisy (experimental) data on an underlying parametric manifold. The EIM basis functions are computed Offline from the noise-free manifold; the EIM coefficients for any function on the manifold are computed Online from experimental observations through a least-squares formulation. Noise-induced errors in the EIM coefficients and in linear-functional outputs are assessed through standard confidence intervals and without knowledge of the parameter value or the noise level. We also propose an associated procedure for parameter estimation from noisy data.
first_indexed 2024-09-23T13:23:03Z
format Article
id mit-1721.1/99385
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T13:23:03Z
publishDate 2015
publisher Elsevier
record_format dspace
spelling mit-1721.1/993852022-10-01T14:54:08Z Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data Patera, Anthony T. Ronquist, Einar M. Massachusetts Institute of Technology. Department of Mechanical Engineering Patera, Anthony T. In this Note we extend the Empirical Interpolation Method (EIM) to a regression context which accommodates noisy (experimental) data on an underlying parametric manifold. The EIM basis functions are computed Offline from the noise-free manifold; the EIM coefficients for any function on the manifold are computed Online from experimental observations through a least-squares formulation. Noise-induced errors in the EIM coefficients and in linear-functional outputs are assessed through standard confidence intervals and without knowledge of the parameter value or the noise level. We also propose an associated procedure for parameter estimation from noisy data. United States. Air Force Office of Scientific Research (Grant FA9550-09-1-0613) United States. Office of Naval Research (Grant N00014-11-0713) Norwegian University of Science and Technology 2015-10-21T14:47:18Z 2015-10-21T14:47:18Z 2012-05 2012-03 Article http://purl.org/eprint/type/JournalArticle 1631073X http://hdl.handle.net/1721.1/99385 Patera, Anthony T., and Einar M. Ronquist. “Regression on Parametric Manifolds: Estimation of Spatial Fields, Functional Outputs, and Parameters from Noisy Data.” Comptes Rendus Mathematique 350, no. 9–10 (May 2012): 543–547. https://orcid.org/0000-0002-2631-6463 en_US http://dx.doi.org/10.1016/j.crma.2012.05.002 Comptes Rendus Mathematique Creative Commons Attribution-Noncommercial-NoDerivatives http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier MIT Web Domain
spellingShingle Patera, Anthony T.
Ronquist, Einar M.
Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data
title Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data
title_full Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data
title_fullStr Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data
title_full_unstemmed Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data
title_short Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data
title_sort regression on parametric manifolds estimation of spatial fields functional outputs and parameters from noisy data
url http://hdl.handle.net/1721.1/99385
https://orcid.org/0000-0002-2631-6463
work_keys_str_mv AT pateraanthonyt regressiononparametricmanifoldsestimationofspatialfieldsfunctionaloutputsandparametersfromnoisydata
AT ronquisteinarm regressiononparametricmanifoldsestimationofspatialfieldsfunctionaloutputsandparametersfromnoisydata