Direct repair of 3,N[superscript 4]-ethenocytosine by the human ALKBH2 dioxygenase is blocked by the AAG/MPG glycosylase

Exocyclic ethenobases are highly mutagenic DNA lesions strongly implicated in inflammation and vinyl chloride-induced carcinogenesis. While the alkyladenine DNA glycosylase, AAG (or MPG), binds the etheno lesions 1,N[superscript 6]-ethenoadenine (ɛA) and 3,N[superscript 4]-ethenocytosine (ɛC) with h...

Full description

Bibliographic Details
Main Authors: Fu, Dragony, Samson, Leona D
Other Authors: Massachusetts Institute of Technology. Center for Environmental Health Sciences
Format: Article
Language:en_US
Published: Elsevier 2015
Online Access:http://hdl.handle.net/1721.1/99507
https://orcid.org/0000-0002-7112-1454
Description
Summary:Exocyclic ethenobases are highly mutagenic DNA lesions strongly implicated in inflammation and vinyl chloride-induced carcinogenesis. While the alkyladenine DNA glycosylase, AAG (or MPG), binds the etheno lesions 1,N[superscript 6]-ethenoadenine (ɛA) and 3,N[superscript 4]-ethenocytosine (ɛC) with high affinity, only ɛA can be excised to initiate base excision repair. Here, we discover that the human AlkB homolog 2 (ALKBH2) dioxygenase enzyme catalyzes direct reversal of ɛC lesions in both double- and single-stranded DNA with comparable efficiency to canonical ALKBH2 substrates. Notably, we find that in vitro, the non-enzymatic binding of AAG to ɛC specifically blocks ALKBH2-catalyzed repair of ɛC but not that of methylated ALKBH2 substrates. These results identify human ALKBH2 as a repair enzyme for mutagenic ɛC lesions and highlight potential consequences for substrate-binding overlap between the base excision and direct reversal DNA repair pathways.