Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture
Superconducting nanowire avalanche single-photon detectors (SNAPs) with n parallel nanowires are advantageous over single-nanowire detectors because their output signal amplitude scales linearly with n. However, the SNAP architecture has not been viably demonstrated for n > 4. To increase n for l...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Optical Society of America
2015
|
Online Access: | http://hdl.handle.net/1721.1/99758 https://orcid.org/0000-0002-2037-8495 https://orcid.org/0000-0001-6929-4391 https://orcid.org/0000-0003-2480-767X https://orcid.org/0000-0001-7453-9031 https://orcid.org/0000-0002-1438-7109 https://orcid.org/0000-0002-8553-6474 |
Summary: | Superconducting nanowire avalanche single-photon detectors (SNAPs) with n parallel nanowires are advantageous over single-nanowire detectors because their output signal amplitude scales linearly with n. However, the SNAP architecture has not been viably demonstrated for n > 4. To increase n for larger signal amplification, we designed a multi-stage, successive-avalanche architecture which used nanowires, connected via choke inductors in a binary-tree layout. We demonstrated an avalanche detector with n = 8 parallel nanowires and achieved eight-fold signal amplification, with a timing jitter of 54 ps. |
---|