Linear-Time Algorithm for Sliding Tokens on Trees
Suppose that we are given two independent sets I [subscript b] and I [subscript r] of a graph such that ∣ I [subscript b] ∣ = ∣ I [subscript r] ∣, and imagine that a token is placed on each vertex in I [subscript b]. Then, the sliding token problem is to determine whether there exists a sequence of...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Springer-Verlag
2015
|
Online Access: | http://hdl.handle.net/1721.1/99985 https://orcid.org/0000-0003-3803-5703 |
Summary: | Suppose that we are given two independent sets I [subscript b] and I [subscript r] of a graph such that ∣ I [subscript b] ∣ = ∣ I [subscript r] ∣, and imagine that a token is placed on each vertex in I [subscript b]. Then, the sliding token problem is to determine whether there exists a sequence of independent sets which transforms I [subscript b] and I [subscript r] so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. This problem is known to be PSPACE-complete even for planar graphs, and also for bounded treewidth graphs. In this paper, we show that the problem is solvable for trees in quadratic time. Our proof is constructive: for a yes-instance, we can find an actual sequence of independent sets between I [subscript b] and I [subscript r] whose length (i.e., the number of token-slides) is quadratic. We note that there exists an infinite family of instances on paths for which any sequence requires quadratic length. |
---|