Fast learning Circular Complex-valued Extreme Learning Machine (CC-ELM) for real-valued classification problems
In this paper, we present a fast learning fully complex-valued extreme learning machine classifier, referred to as ‘Circular Complex-valued Extreme Learning Machine (CC-ELM)’ for handling real-valued classification problems. CC-ELM is a single hidden layer network with non-linear input and hidden la...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/100129 http://hdl.handle.net/10220/13583 |
Summary: | In this paper, we present a fast learning fully complex-valued extreme learning machine classifier, referred to as ‘Circular Complex-valued Extreme Learning Machine (CC-ELM)’ for handling real-valued classification problems. CC-ELM is a single hidden layer network with non-linear input and hidden layers and a linear output layer. A circular transformation with a translational/rotational bias term that performs a one-to-one transformation of real-valued features to the complex plane is used as an activation function for the input neurons. The neurons in the hidden layer employ a fully complex-valued Gaussian-like (‘sech’) activation function. The input parameters of CC-ELM are chosen randomly and the output weights are computed analytically. This paper also presents an analytical proof to show that the decision boundaries of a single complex-valued neuron at the hidden and output layers of CC-ELM consist of two hyper-surfaces that intersect orthogonally. These orthogonal boundaries and the input circular transformation help CC-ELM to perform real-valued classification tasks efficiently.
Performance of CC-ELM is evaluated using a set of benchmark real-valued classification problems from the University of California, Irvine machine learning repository. Finally, the performance of CC-ELM is compared with existing methods on two practical problems, viz., the acoustic emission signal classification problem and a mammogram classification problem. These study results show that CC-ELM performs better than other existing (both) real-valued and complex-valued classifiers, especially when the data sets are highly unbalanced. |
---|