A meta-cognitive learning algorithm for an extreme learning machine classifier
This paper presents an efficient fast learning classifier based on the Nelson and Narens model of human meta-cognition, namely ‘Meta-cognitive Extreme Learning Machine (McELM).’ McELM has two components: a cognitive component and a meta-cognitive component. The cognitive component of McELM is a thre...
Үндсэн зохиолчид: | Suresh, Sundaram, Savitha, R., Kim, H. J. |
---|---|
Бусад зохиолчид: | School of Computer Engineering |
Формат: | Journal Article |
Хэл сонгох: | English |
Хэвлэсэн: |
2013
|
Нөхцлүүд: | |
Онлайн хандалт: | https://hdl.handle.net/10356/101260 http://hdl.handle.net/10220/16777 |
Ижил төстэй зүйлс
-
A meta-cognitive learning algorithm for a fully complex-valued relaxation network
-н: Suresh, Sundaram, зэрэг
Хэвлэсэн: (2013) -
A projection based learning in Meta-cognitive Radial Basis Function Network for classification problems
-н: Sateesh Babu, Giduthuri, зэрэг
Хэвлэсэн: (2013) -
Human action recognition using a fast learning fully complex-valued classifier
-н: Suresh, Sundaram, зэрэг
Хэвлэсэн: (2013) -
Universal machine learning classifier using extreme learning machines
-н: Chen, Jinnan
Хэвлэсэн: (2019) -
A fully complex-valued radial basis function classifier for real-valued classification problems
-н: Suresh, Sundaram, зэрэг
Хэвлэсэн: (2013)