Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow
This paper presents a detailed numerical analysis of the transient characteristics of electric double layer (EDL) charging and the associated induced-charge electrokinetic (ICEK) flow around an ideally polarizable cylinder. To this end, we solved numerically the coupled Poisson-Nernst-Planck and Nav...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/103418 http://hdl.handle.net/10220/47787 |
_version_ | 1811695555099754496 |
---|---|
author | Zhao, Cunlu Yang, Chun Wang, Qiuwang Zeng, Min |
author2 | School of Mechanical and Aerospace Engineering |
author_facet | School of Mechanical and Aerospace Engineering Zhao, Cunlu Yang, Chun Wang, Qiuwang Zeng, Min |
author_sort | Zhao, Cunlu |
collection | NTU |
description | This paper presents a detailed numerical analysis of the transient characteristics of electric double layer (EDL) charging and the associated induced-charge electrokinetic (ICEK) flow around an ideally polarizable cylinder. To this end, we solved numerically the coupled Poisson-Nernst-Planck and Navier-Stokes equations with the finite element method. The numerical simulation provides an unprecedented full-field (including the EDL region) characterization of the transient evolutions of ion transport, electric potential, and fluid flow during the EDL charging. The simulation results show that the EDL charging is driven by the electric current normal to the cylinder surface. With EDL being charged, the charge density in the EDL counteracts the local external electric field on the cylinder surface to reduce the electric current, which then leads to the slowing down of the EDL charging. At the steady state, the EDL becomes fully charged and the charge density in EDL exactly counteracts the external electric field, and then the EDL charging stops. During the EDL charging, the interaction of the external electric field with the charge density in the EDL drives the liquid in the EDL to move first, and then as time evolves, the liquid in the bulk electrolyte sets in motion because of the momentum transfer between the EDL and the bulk. These findings are conducive to the understanding of the transient dynamics of ICEK phenomena around polarizable objects. |
first_indexed | 2024-10-01T07:25:20Z |
format | Journal Article |
id | ntu-10356/103418 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T07:25:20Z |
publishDate | 2019 |
record_format | dspace |
spelling | ntu-10356/1034182023-03-04T17:20:11Z Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow Zhao, Cunlu Yang, Chun Wang, Qiuwang Zeng, Min School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering Electrokinetic Phenomena Electrolytes This paper presents a detailed numerical analysis of the transient characteristics of electric double layer (EDL) charging and the associated induced-charge electrokinetic (ICEK) flow around an ideally polarizable cylinder. To this end, we solved numerically the coupled Poisson-Nernst-Planck and Navier-Stokes equations with the finite element method. The numerical simulation provides an unprecedented full-field (including the EDL region) characterization of the transient evolutions of ion transport, electric potential, and fluid flow during the EDL charging. The simulation results show that the EDL charging is driven by the electric current normal to the cylinder surface. With EDL being charged, the charge density in the EDL counteracts the local external electric field on the cylinder surface to reduce the electric current, which then leads to the slowing down of the EDL charging. At the steady state, the EDL becomes fully charged and the charge density in EDL exactly counteracts the external electric field, and then the EDL charging stops. During the EDL charging, the interaction of the external electric field with the charge density in the EDL drives the liquid in the EDL to move first, and then as time evolves, the liquid in the bulk electrolyte sets in motion because of the momentum transfer between the EDL and the bulk. These findings are conducive to the understanding of the transient dynamics of ICEK phenomena around polarizable objects. MOE (Min. of Education, S’pore) Published version 2019-03-07T05:27:05Z 2019-12-06T21:12:16Z 2019-03-07T05:27:05Z 2019-12-06T21:12:16Z 2018 Journal Article Zhao, C., Yang, C., Wang, Q., & Zeng, Min. (2018). Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow. Physics of Fluids, 30(12), 122005-. doi:10.1063/1.5055866 1070-6631 https://hdl.handle.net/10356/103418 http://hdl.handle.net/10220/47787 10.1063/1.5055866 en Physics of Fluids © 2018 Authors. All rights reserved. This paper was published by AIP Publishing in Physics of Fluids and is made available with permission of Authors. 11 p. application/pdf |
spellingShingle | DRNTU::Engineering::Mechanical engineering Electrokinetic Phenomena Electrolytes Zhao, Cunlu Yang, Chun Wang, Qiuwang Zeng, Min Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow |
title | Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow |
title_full | Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow |
title_fullStr | Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow |
title_full_unstemmed | Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow |
title_short | Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow |
title_sort | transient characteristics of electric double layer charging and the associated induced charge electrokinetic flow |
topic | DRNTU::Engineering::Mechanical engineering Electrokinetic Phenomena Electrolytes |
url | https://hdl.handle.net/10356/103418 http://hdl.handle.net/10220/47787 |
work_keys_str_mv | AT zhaocunlu transientcharacteristicsofelectricdoublelayerchargingandtheassociatedinducedchargeelectrokineticflow AT yangchun transientcharacteristicsofelectricdoublelayerchargingandtheassociatedinducedchargeelectrokineticflow AT wangqiuwang transientcharacteristicsofelectricdoublelayerchargingandtheassociatedinducedchargeelectrokineticflow AT zengmin transientcharacteristicsofelectricdoublelayerchargingandtheassociatedinducedchargeelectrokineticflow |