Application of fluid–structure interaction methods to estimate the mechanics of rupture in Asian abdominal aortic aneurysms

Abdominal aortic aneurysms (AAAs) occur because of dilation of the infra-renal aorta to more than 150% of its initial diameter. Progression to rupture is aided by several pathophysiological and biomechanical factors. Surgical intervention is recommended when the aneurysm maximum transverse diameter...

ver descrição completa

Detalhes bibliográficos
Principais autores: Canchi, Tejas, Saxena, Ashish, Narayanan, Sriram, Pwee, Esley Chin Hock, Ng, Eddie Yin Kwee
Outros Autores: School of Mechanical and Aerospace Engineering
Formato: Journal Article
Idioma:English
Publicado em: 2019
Assuntos:
Acesso em linha:https://hdl.handle.net/10356/103638
http://hdl.handle.net/10220/49494
Descrição
Resumo:Abdominal aortic aneurysms (AAAs) occur because of dilation of the infra-renal aorta to more than 150% of its initial diameter. Progression to rupture is aided by several pathophysiological and biomechanical factors. Surgical intervention is recommended when the aneurysm maximum transverse diameter (DAAA) exceeds 55 mm. A system model that incorporates biomechanical parameters will improve prognosis and establish a relationship between AAA geometry and rupture risk. Two Asian patient-specific AAA geometries were obtained from an IRB-approved vascular database. A biomechanical model based on the fluid–structure interaction (FSI) method was developed for a small aneurysm with DAAA of 35 mm and a large aneurysm with a corresponding diameter of 75 mm. The small aneurysm (patient 1) developed a maximum principal stress (PS1) of 3.16e5 Pa and the large aneurysm (patient 2) developed a PS1 of 2.32e5 Pa. Maximum deformation of arterial wall was 0.0020 m and 0.0022 m for patients 1 and 2 respectively. Location of maximum integral wall shear stress (WSS) (fluid) was different from that of PS1. Induced WSS was also higher in patient 1 (18.74 Pa vs 12.88 Pa). An FSI model incorporating the effect of both the structural and fluid domains aids in better understanding of the mechanics of AAA rupture. Patient 1, having a lower DAAA than patient 2, developed a larger PS1 and WSS. It may be concluded that DAAA may not be the sole determinant of AAA rupture risk.