Video event detection : from subvolume localization to spatio-temporal path search

Although sliding window-based approaches have been quite successful in detecting objects in images, it is not a trivial problem to extend them to detecting events in videos. We propose to search for spatio-temporal paths for video event detection. This new formulation can accurately detect and loca...

Full description

Bibliographic Details
Main Authors: Tran, Du, Yuan, Junsong, Forsyth, David
Other Authors: School of Electrical and Electronic Engineering
Format: Journal Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/103816
http://hdl.handle.net/10220/19322
Description
Summary:Although sliding window-based approaches have been quite successful in detecting objects in images, it is not a trivial problem to extend them to detecting events in videos. We propose to search for spatio-temporal paths for video event detection. This new formulation can accurately detect and locate video events in cluttered and crowded scenes, and is robust to camera motions. It can also well handle the scale, shape, and intra-class variations of the event. Compared to event detection using spatio-temporal sliding windows, the spatio-temporal paths correspond to the event trajectories in the video space, thus can better handle events composed by moving objects. We prove that the proposed search algorithm can achieve the global optimal solution with the lowest complexity. Experiments are conducted on realistic video datasets with different event detection tasks, such as anomaly event detection, walking person detection, and running detection. Our proposed method is compatible to different types of video features or object detectors and robust to false and missed local detections. It significantly improves the overall detection and localization accuracy over the state-of-the-art methods.