Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies

Surface plasmons in graphene have many promising properties, such as high confinement, low losses, and gate-tunability. However, it is also the high confinement that makes them difficult to excite due to their large momentum mismatch with free-space mid-infrared light. We propose to use shaped graph...

Full description

Bibliographic Details
Main Authors: Du, Luping, Tang, Dingyuan
Other Authors: School of Electrical and Electronic Engineering
Format: Journal Article
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/10356/104119
http://hdl.handle.net/10220/19513
Description
Summary:Surface plasmons in graphene have many promising properties, such as high confinement, low losses, and gate-tunability. However, it is also the high confinement that makes them difficult to excite due to their large momentum mismatch with free-space mid-infrared light. We propose to use shaped graphene nano-vacancies to compensate for the momentum mismatch, revealing its high flexibility in graphene plasmon (GP) excitation and manipulation. We first examine the electromagnetic standing waves generated with a pair of straight vacancies, in order to verify the excitation of GPs and to illustrate their tunability with gate voltage. Plasmonic lenses are then designed to achieve the super-focusing of mid-infrared light and to generate plasmonic vortices in graphene. A∼0.0125λ0 hotspot is generated, far below the optical diffraction limit, hence revealing the capability of light control at deep-subwavelength scale.