Modeling meta-cognition for efficient learning

‘Meta-cognitive Radial Basis Function Network’ (McRBFN) and ‘Projection Based Learning’ (PBL) is a machine-learning algorithm used to classify a data sample. Its meta-cognitive component selects one learning strategy from sample deletion, neuron growth and parameter update and sample reservation. Th...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteur: Ruan, Pingcheng
Andere auteurs: Suresh Sundaram
Formaat: Student Research Paper
Taal:English
Gepubliceerd in: 2015
Onderwerpen:
Online toegang:https://hdl.handle.net/10356/105728
http://hdl.handle.net/10220/26034
Omschrijving
Samenvatting:‘Meta-cognitive Radial Basis Function Network’ (McRBFN) and ‘Projection Based Learning’ (PBL) is a machine-learning algorithm used to classify a data sample. Its meta-cognitive component selects one learning strategy from sample deletion, neuron growth and parameter update and sample reservation. The cognitive component adjusts the output weight to minimize the error of prediction using PBL algorithm. In this paper, we propose an improvement on the sample addition strategy in order to prevent the corruption of existing knowledge. At last, we evaluate the improved algorithm using three benchmarking classification problems.