Self-assembled nanostructures of red fluorescent amphiphilic block copolymers as both imaging probes and drug carriers

We report a red-fluorescent drug delivery system formed by biodegradable and biocompatible amphiphilic A-B-A block copolymers. Each polymer consists of a red fluorescent dye covalently bonded in the middle of hydrophobic block (B) of polylactone, tethered at both ends with poly[(oligo ethylene glyco...

Full description

Bibliographic Details
Main Authors: Huang, Shuo, Wei, Xin, Wang, Mingfeng
Other Authors: School of Chemical and Biomedical Engineering
Format: Journal Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/106605
http://hdl.handle.net/10220/47423
Description
Summary:We report a red-fluorescent drug delivery system formed by biodegradable and biocompatible amphiphilic A-B-A block copolymers. Each polymer consists of a red fluorescent dye covalently bonded in the middle of hydrophobic block (B) of polylactone, tethered at both ends with poly[(oligo ethylene glycol) methyl ether methacrylate] (POEGMA) as the hydrophilic block. Two types of polylactones, i.e., semicrystalline poly(ε-caprolactone) (PCL) and amorphous poly(δ-decalactone) (PDL), respectively, were incorporated as the hydrophobic segment in the block copolymers. Using transmission electron microscopy, we characterized the self-assembled nanostructures formed by these amphiphilic block copolymers in mixtures of water/tetrahydrofuran or water/dimethylformamide. All of these polymers remained highly fluorescent in water, although some extent of aggregation-induced fluorescence quenching was still observed. Among the three types of polymers presented here, the polymer (RPO-3) containing an amorphous block of PDL showed the highest drug-loading capacity and the largest extent of drug release in acidic media. RPO-3 micelles loaded with doxorubicin as a model of anticancer drug showed sustainable intracellular release and cytotoxicity against HeLa cells.