A comparative study on the windowed and multi-cell square tubes under axial and oblique loading
The collapse of thin-walled tubes under axial and oblique loading is frequently encountered in real crash events. The windowing and multi-cell methods are effective in improving tubes' energy absorbing performance. In this paper, a comparative study on the performance of windowed and multi-cell...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/106695 http://hdl.handle.net/10220/16639 http://dx.doi.org/10.1016/j.tws.2013.02.002 |
Summary: | The collapse of thin-walled tubes under axial and oblique loading is frequently encountered in real crash events. The windowing and multi-cell methods are effective in improving tubes' energy absorbing performance. In this paper, a comparative study on the performance of windowed and multi-cell square tubes of the same weight under axial and oblique loading is conducted numerically. The results show that the multi-cell tube can achieve higher mean crushing force than the windowed tube but the windowed tube has lower initial peak force. The effectiveness of both methods reduces as the load angle increases. Moreover, the multi-cell and windowed tubes may have worse performance than the conventional tube if the former two collapse in global bending and the later in axial mode. |
---|