Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots

MXene quantum dots (QDs) are emerging 0D nanomaterials. Here, a new heterostructure is developed based on a 1D photoactive semiconductor and a 0D MXene QD for improved photocatalytic reduction of CO2 into methanol. Specifically, Ti3C2 QDs are incorporated onto Cu2O nanowires (NWs) through a simple s...

Full description

Bibliographic Details
Main Authors: Zeng, Zhiping, Yan, Yibo, Chen, Jie, Zan, Ping, Tian, Qinghua, Chen, Peng
Other Authors: School of Chemical and Biomedical Engineering
Format: Journal Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/137273
Description
Summary:MXene quantum dots (QDs) are emerging 0D nanomaterials. Here, a new heterostructure is developed based on a 1D photoactive semiconductor and a 0D MXene QD for improved photocatalytic reduction of CO2 into methanol. Specifically, Ti3C2 QDs are incorporated onto Cu2O nanowires (NWs) through a simple self‐assembly strategy. It is demonstrated that Ti3C2 QDs not only significantly improve the stability of Cu2O NWs but also greatly improve their photocatatlytic performance by enhancing charge transfer, charge transport, carrier density, light adsorption, as well as by decreasing band bending edge and charge recombination. The energy level diagram derived from both experimental measurements and theoretical calculations provide further insights of such hierarchical photocatalysis system.