Summary: | Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three-layered Cu2 S@carbon@MoS2 as anode materials for sodium-ion batteries is reported. Through a facile multistep template-engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen-doped carbon-coated Cu2 S nanoboxes to realize the Cu2 S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three-layered Cu2 S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.
|