Supervised learning for finite element analysis of holes under biaxial load

This paper presents a novel approach of using supervised learning with a shallow neural network to increase the efficiency for the finite element analysis of holes under biaxial load. The objective of this approach is to reduce the number of elements in the finite element analysis while maintaining...

Descripción completa

Detalles Bibliográficos
Autor principal: Lau, Jia Tai
Otros Autores: Chow Wai Tuck
Formato: Final Year Project (FYP)
Lenguaje:English
Publicado: Nanyang Technological University 2020
Materias:
Acceso en línea:https://hdl.handle.net/10356/139113