A novel model predictive control for the single-phase inverter with L type filter in grid-connected mode

The energy crisis promotes the research and development of renewable energy grid-connected technologies. The project has made an overall design of the single-phase grid-connected inverter, and each functional module unit has also been introduced in detail. The inverter circuit adopts a single-phase...

Full description

Bibliographic Details
Main Author: Zhang, Zhiming
Other Authors: Jack Zhang Xin
Format: Final Year Project (FYP)
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/139692
_version_ 1811694144147423232
author Zhang, Zhiming
author2 Jack Zhang Xin
author_facet Jack Zhang Xin
Zhang, Zhiming
author_sort Zhang, Zhiming
collection NTU
description The energy crisis promotes the research and development of renewable energy grid-connected technologies. The project has made an overall design of the single-phase grid-connected inverter, and each functional module unit has also been introduced in detail. The inverter circuit adopts a single-phase Full-bridge structure as well as analyzes its working state. Proposed a unipolar SPWM with a finite control set model predictive control (FCS-MPC) algorithm control strategy. The single-phase grid-connected inverter adopts the method of voltage source input to control the output current. Through sampling and then FCS-MPC algorithm analysis and prediction, using the cost function to select the minimum duty cycle to control the output current of a single inverter. In the project, each functional module of the single-phase grid-connected inverter and the design method of the specific hardware circuit are given. At the same time, the overall idea of software design is introduced. The entire design algorithm is built on a DSP and is simulated in MATLAB / SIMULINK to verify the practical feasibility of the program. The results demonstrate that the design according to this scheme can make the single-phase grid-connected inverter operate safely, reliably and with a fast dynamic response speed.
first_indexed 2024-10-01T07:02:54Z
format Final Year Project (FYP)
id ntu-10356/139692
institution Nanyang Technological University
language English
last_indexed 2024-10-01T07:02:54Z
publishDate 2020
publisher Nanyang Technological University
record_format dspace
spelling ntu-10356/1396922023-07-07T18:23:50Z A novel model predictive control for the single-phase inverter with L type filter in grid-connected mode Zhang, Zhiming Jack Zhang Xin School of Electrical and Electronic Engineering Energy Research Institute @NTU jackzhang@ntu.edu.sg Engineering::Electrical and electronic engineering The energy crisis promotes the research and development of renewable energy grid-connected technologies. The project has made an overall design of the single-phase grid-connected inverter, and each functional module unit has also been introduced in detail. The inverter circuit adopts a single-phase Full-bridge structure as well as analyzes its working state. Proposed a unipolar SPWM with a finite control set model predictive control (FCS-MPC) algorithm control strategy. The single-phase grid-connected inverter adopts the method of voltage source input to control the output current. Through sampling and then FCS-MPC algorithm analysis and prediction, using the cost function to select the minimum duty cycle to control the output current of a single inverter. In the project, each functional module of the single-phase grid-connected inverter and the design method of the specific hardware circuit are given. At the same time, the overall idea of software design is introduced. The entire design algorithm is built on a DSP and is simulated in MATLAB / SIMULINK to verify the practical feasibility of the program. The results demonstrate that the design according to this scheme can make the single-phase grid-connected inverter operate safely, reliably and with a fast dynamic response speed. Bachelor of Engineering (Electrical and Electronic Engineering) 2020-05-21T02:58:21Z 2020-05-21T02:58:21Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/139692 en P1031-182 application/pdf Nanyang Technological University
spellingShingle Engineering::Electrical and electronic engineering
Zhang, Zhiming
A novel model predictive control for the single-phase inverter with L type filter in grid-connected mode
title A novel model predictive control for the single-phase inverter with L type filter in grid-connected mode
title_full A novel model predictive control for the single-phase inverter with L type filter in grid-connected mode
title_fullStr A novel model predictive control for the single-phase inverter with L type filter in grid-connected mode
title_full_unstemmed A novel model predictive control for the single-phase inverter with L type filter in grid-connected mode
title_short A novel model predictive control for the single-phase inverter with L type filter in grid-connected mode
title_sort novel model predictive control for the single phase inverter with l type filter in grid connected mode
topic Engineering::Electrical and electronic engineering
url https://hdl.handle.net/10356/139692
work_keys_str_mv AT zhangzhiming anovelmodelpredictivecontrolforthesinglephaseinverterwithltypefilteringridconnectedmode
AT zhangzhiming novelmodelpredictivecontrolforthesinglephaseinverterwithltypefilteringridconnectedmode