Towards efficient resource allocation for heterogeneous workloads in IaaS clouds
Infrastructure-as-a-service (IaaS) cloud technology has attracted much attention from users who have demands on large amounts of computing resources. Current IaaS clouds provision resources in terms of virtual machines (VMs) with homogeneous resource configurations where different types of resources...
Principais autores: | Wei, Lei, Foh, Chuan Heng, He, Bingsheng, Cai, Jianfei |
---|---|
Outros Autores: | School of Computer Science and Engineering |
Formato: | Journal Article |
Idioma: | English |
Publicado em: |
2020
|
Assuntos: | |
Acesso em linha: | https://hdl.handle.net/10356/139875 |
Registros relacionados
-
AI Workload Allocation Methods for Edge-Cloud Computing: A Review
por: Sarah Ammar Rafea, et al.
Publicado em: (2023-12-01) -
Cloud Node Auto-Scaling System Automation Based on Computing Workload Prediction
por: Tri Fidrian Arya, et al.
Publicado em: (2024-10-01) -
Profit-Efficient Elastic Allocation of Cloud Resources Using Two-Stage Adaptive Workload Prediction
por: Lei Li, et al.
Publicado em: (2025-02-01) -
Holistic teaching workload allocation for research-intensive universities
por: Roopchandani, Arpit
Publicado em: (2024) -
Robustness of Workload Forecasting Models in Cloud Data Centers: A White-Box Adversarial Attack Perspective
por: Nosin Ibna Mahbub, et al.
Publicado em: (2024-01-01)