Context-aware reliable crowdsourcing in social networks

There are two problems in the traditional crowdsourcing systems for handling complex tasks. First, decomposing complex tasks into a set of micro-subtasks requires the decomposition capability of the requesters; thus, some requesters may abandon using crowdsourcing to accomplish a large number of com...

Full description

Bibliographic Details
Main Authors: Jiang, Jiuchuan, An, Bo, Jiang, Yichuan, Lin, Donghui
Other Authors: School of Computer Science and Engineering
Format: Journal Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/139994
_version_ 1811677318188367872
author Jiang, Jiuchuan
An, Bo
Jiang, Yichuan
Lin, Donghui
author2 School of Computer Science and Engineering
author_facet School of Computer Science and Engineering
Jiang, Jiuchuan
An, Bo
Jiang, Yichuan
Lin, Donghui
author_sort Jiang, Jiuchuan
collection NTU
description There are two problems in the traditional crowdsourcing systems for handling complex tasks. First, decomposing complex tasks into a set of micro-subtasks requires the decomposition capability of the requesters; thus, some requesters may abandon using crowdsourcing to accomplish a large number of complex tasks since they cannot bear such heavy burden by themselves. Second, tasks are often assigned redundantly to multiple workers to achieve reliable results, but reliability may not be ensured when there are many malicious workers in the crowd. Currently, it is observed that the workers are often connected through social networks, a feature that can significantly facilitate task allocation and task execution in crowdsourcing. Therefore, this paper investigates crowdsourcing in social networks and presents a novel context-aware reliable crowdsourcing approach. In our presented approach, the two problems in traditional crowdsourcing are addressed as follows: 1) the complex tasks can be performed through autonomous coordination between the assigned worker and his contextual workers in the social network; thus, the requesters can be exempt from a heavy computing load for decomposing complex tasks into subtasks and combing the partial results of subtasks, thereby enabling more requesters to accomplish a large number of complex tasks through crowdsourcing, and 2) the reliability of a worker is determined not only by the reputation of the worker himself but also by the reputations of the contextual workers in the social network; thus, the unreliability of transient or malicious workers can be effectively addressed. The presented approach addresses two types of social networks including simplex and multiplex networks. Based on theoretical analyses and experiments on a real-world dataset, we find that the presented approach can achieve significantly higher task allocation and execution efficiency than the previous benchmark task allocation approaches; moreover, the presented contextual reputation mechanism can achieve relatively higher reliability when there are many malicious workers in the crowd.
first_indexed 2024-10-01T02:35:27Z
format Journal Article
id ntu-10356/139994
institution Nanyang Technological University
language English
last_indexed 2024-10-01T02:35:27Z
publishDate 2020
record_format dspace
spelling ntu-10356/1399942020-05-26T03:03:06Z Context-aware reliable crowdsourcing in social networks Jiang, Jiuchuan An, Bo Jiang, Yichuan Lin, Donghui School of Computer Science and Engineering Engineering::Computer science and engineering Context-aware Crowdsourcing There are two problems in the traditional crowdsourcing systems for handling complex tasks. First, decomposing complex tasks into a set of micro-subtasks requires the decomposition capability of the requesters; thus, some requesters may abandon using crowdsourcing to accomplish a large number of complex tasks since they cannot bear such heavy burden by themselves. Second, tasks are often assigned redundantly to multiple workers to achieve reliable results, but reliability may not be ensured when there are many malicious workers in the crowd. Currently, it is observed that the workers are often connected through social networks, a feature that can significantly facilitate task allocation and task execution in crowdsourcing. Therefore, this paper investigates crowdsourcing in social networks and presents a novel context-aware reliable crowdsourcing approach. In our presented approach, the two problems in traditional crowdsourcing are addressed as follows: 1) the complex tasks can be performed through autonomous coordination between the assigned worker and his contextual workers in the social network; thus, the requesters can be exempt from a heavy computing load for decomposing complex tasks into subtasks and combing the partial results of subtasks, thereby enabling more requesters to accomplish a large number of complex tasks through crowdsourcing, and 2) the reliability of a worker is determined not only by the reputation of the worker himself but also by the reputations of the contextual workers in the social network; thus, the unreliability of transient or malicious workers can be effectively addressed. The presented approach addresses two types of social networks including simplex and multiplex networks. Based on theoretical analyses and experiments on a real-world dataset, we find that the presented approach can achieve significantly higher task allocation and execution efficiency than the previous benchmark task allocation approaches; moreover, the presented contextual reputation mechanism can achieve relatively higher reliability when there are many malicious workers in the crowd. 2020-05-26T03:03:06Z 2020-05-26T03:03:06Z 2017 Journal Article Jiang, J., An, B., Jiang, Y., & Lin, D. (2020). Context-aware reliable crowdsourcing in social networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(2), 617-632. doi:10.1109/TSMC.2017.2777447 2168-2216 https://hdl.handle.net/10356/139994 10.1109/TSMC.2017.2777447 2-s2.0-85039801180 2 50 617 632 en IEEE Transactions on Systems, Man, and Cybernetics: Systems © 2017 IEEE. All rights reserved.
spellingShingle Engineering::Computer science and engineering
Context-aware
Crowdsourcing
Jiang, Jiuchuan
An, Bo
Jiang, Yichuan
Lin, Donghui
Context-aware reliable crowdsourcing in social networks
title Context-aware reliable crowdsourcing in social networks
title_full Context-aware reliable crowdsourcing in social networks
title_fullStr Context-aware reliable crowdsourcing in social networks
title_full_unstemmed Context-aware reliable crowdsourcing in social networks
title_short Context-aware reliable crowdsourcing in social networks
title_sort context aware reliable crowdsourcing in social networks
topic Engineering::Computer science and engineering
Context-aware
Crowdsourcing
url https://hdl.handle.net/10356/139994
work_keys_str_mv AT jiangjiuchuan contextawarereliablecrowdsourcinginsocialnetworks
AT anbo contextawarereliablecrowdsourcinginsocialnetworks
AT jiangyichuan contextawarereliablecrowdsourcinginsocialnetworks
AT lindonghui contextawarereliablecrowdsourcinginsocialnetworks