Quantile regression for additive coefficient models in high dimensions
In this paper, we consider quantile regression in additive coefficient models (ACM) with high dimensionality under a sparsity assumption and approximate the additive coefficient functions by B-spline expansion. First, we consider the oracle estimator for quantile ACM when the number of additive coef...
Автори: | Fan, Zengyan, Lian, Heng |
---|---|
Інші автори: | School of Physical and Mathematical Sciences |
Формат: | Journal Article |
Мова: | English |
Опубліковано: |
2020
|
Предмети: | |
Онлайн доступ: | https://hdl.handle.net/10356/140938 |
Схожі ресурси
-
Flexible semi-parametric quantile regression models
за авторством: Fan, Zengyan
Опубліковано: (2017) -
Quantile Regression in Space-Time Varying Coefficient Model of Upper Respiratory Tract Infections Data
за авторством: Bertho Tantular, та інші
Опубліковано: (2023-02-01) -
Non-parametric quantile regression-based modelling of additive effects to solar irradiation in Southern Africa
за авторством: Amon Masache, та інші
Опубліковано: (2024-04-01) -
Semiparametric estimation of additive quantile regression models by two-fold penalty
за авторством: Lian, Heng
Опубліковано: (2013) -
qgam: Bayesian Nonparametric Quantile Regression Modeling in R
за авторством: Matteo Fasiolo, та інші
Опубліковано: (2021-11-01)