An improved random forest-based computational model for predicting novel miRNA-disease associations
Background: A large body of evidence shows that miRNA regulates the expression of its target genes at post-transcriptional level and the dysregulation of miRNA is related to many complex human diseases. Accurately discovering disease-related miRNAs is conductive to the exploring of the pathogenesis...
Автори: | Yao, Dengju, Zhan, Xiaojuan, Kwoh, Chee-Keong |
---|---|
Інші автори: | School of Computer Science and Engineering |
Формат: | Journal Article |
Мова: | English |
Опубліковано: |
2020
|
Предмети: | |
Онлайн доступ: | https://hdl.handle.net/10356/142190 |
Схожі ресурси
Схожі ресурси
-
ncRNA2MetS : a manually curated database for non-coding RNAs associated with metabolic syndrome
за авторством: Yao, Dengju, та інші
Опубліковано: (2020) -
Mapping miRNA research in schizophrenia: a scientometric review
за авторством: Lim, Mengyu, та інші
Опубліковано: (2023) -
Deep sequencing of small RNA facilitates tissue and sex associated microRNA discovery in zebrafish
за авторством: Vaz, Candida, та інші
Опубліковано: (2015) -
miRNA biogenesis and developmental phase transition in the liverwort M. polymorpha
за авторством: Streubel, S
Опубліковано: (2019) -
Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome
за авторством: Ertel, Adam, та інші
Опубліковано: (2018)