Secret sharing with binary shares
Shamir’s celebrated secret sharing scheme provides an efficient method for encoding a secret of arbitrary length ℓ among any N ≤ 2ℓ players such that for a threshold parameter t, (i) the knowledge of any t shares does not reveal any information about the secret and, (ii) any choice of t+ 1 shares fu...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/142982 |
_version_ | 1811687101189586944 |
---|---|
author | Lin, Fuchun Cheraghchi, Mahdi Guruswami, Venkatesan Safavi-Naini, Reihaneh Wang, Huaxiong |
author2 | School of Physical and Mathematical Sciences |
author_facet | School of Physical and Mathematical Sciences Lin, Fuchun Cheraghchi, Mahdi Guruswami, Venkatesan Safavi-Naini, Reihaneh Wang, Huaxiong |
author_sort | Lin, Fuchun |
collection | NTU |
description | Shamir’s celebrated secret sharing scheme provides an efficient method for encoding a secret of arbitrary length ℓ among any N ≤ 2ℓ players such that for a threshold parameter t, (i) the knowledge of any t shares does not reveal any information about the secret and, (ii) any choice of t+ 1 shares fully reveals the secret. It is known that any such threshold secret sharing scheme necessarily requires shares of length ℓ, and in this sense Shamir’s scheme is optimal. The more general notion of ramp schemes requires the reconstruction of secret from any t + g shares, for a positive integer gap parameter g. Ramp secret sharing scheme necessarily requires shares of length ℓ/g. Other than the bound related to secret length ℓ, the share lengths of ramp schemes can not go below a quantity that depends only on the gap ratio g/N. In this work, we study secret sharing in the extremal case of bit-long shares and arbitrarily small gap ratio g/N, where standard ramp secret sharing becomes impossible. We show, however, that a slightly relaxed but equally effective notion of semantic security for the secret, and negligible reconstruction error probability, eliminate the impossibility. Moreover, we provide explicit constructions of such schemes. One of the consequences of our relaxation is that, unlike standard ramp schemes with perfect secrecy, adaptive and non-adaptive adversaries need different analysis and construction. For non-adaptive adversaries, we explicitly construct secret sharing schemes that provide secrecy against any τ fraction of observed shares, and reconstruction from any ρ fraction of shares, for any choices of 0 ≤ τ < ρ ≤ 1. Our construction achieves secret length N(ρ − τ − o(1)), which we show to be optimal. For adaptive adversaries, we construct explicit schemes attaining a secret length Ω(N(ρ − τ)). We discuss our results and open questions. |
first_indexed | 2024-10-01T05:10:57Z |
format | Journal Article |
id | ntu-10356/142982 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T05:10:57Z |
publishDate | 2020 |
record_format | dspace |
spelling | ntu-10356/1429822023-02-28T19:53:53Z Secret sharing with binary shares Lin, Fuchun Cheraghchi, Mahdi Guruswami, Venkatesan Safavi-Naini, Reihaneh Wang, Huaxiong School of Physical and Mathematical Sciences Science::Mathematics Secret Sharing Scheme Wiretap Channel Shamir’s celebrated secret sharing scheme provides an efficient method for encoding a secret of arbitrary length ℓ among any N ≤ 2ℓ players such that for a threshold parameter t, (i) the knowledge of any t shares does not reveal any information about the secret and, (ii) any choice of t+ 1 shares fully reveals the secret. It is known that any such threshold secret sharing scheme necessarily requires shares of length ℓ, and in this sense Shamir’s scheme is optimal. The more general notion of ramp schemes requires the reconstruction of secret from any t + g shares, for a positive integer gap parameter g. Ramp secret sharing scheme necessarily requires shares of length ℓ/g. Other than the bound related to secret length ℓ, the share lengths of ramp schemes can not go below a quantity that depends only on the gap ratio g/N. In this work, we study secret sharing in the extremal case of bit-long shares and arbitrarily small gap ratio g/N, where standard ramp secret sharing becomes impossible. We show, however, that a slightly relaxed but equally effective notion of semantic security for the secret, and negligible reconstruction error probability, eliminate the impossibility. Moreover, we provide explicit constructions of such schemes. One of the consequences of our relaxation is that, unlike standard ramp schemes with perfect secrecy, adaptive and non-adaptive adversaries need different analysis and construction. For non-adaptive adversaries, we explicitly construct secret sharing schemes that provide secrecy against any τ fraction of observed shares, and reconstruction from any ρ fraction of shares, for any choices of 0 ≤ τ < ρ ≤ 1. Our construction achieves secret length N(ρ − τ − o(1)), which we show to be optimal. For adaptive adversaries, we construct explicit schemes attaining a secret length Ω(N(ρ − τ)). We discuss our results and open questions. Published version 2020-07-17T02:54:31Z 2020-07-17T02:54:31Z 2019 Journal Article Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., & Wang, H. (2019). Secret sharing with binary shares. Leibniz International Proceedings in Informatics, 124, 53:1-53:20. doi:10.4230/LIPIcs.ITCS.2019.53 9783959770958 1868-8969 https://hdl.handle.net/10356/142982 10.4230/LIPIcs.ITCS.2019.53 2-s2.0-85069438051 124 53:1 53:20 en Leibniz International Proceedings in Informatics © 2019 Fuchun Lin, Mahdi Cheraghchi, Venkatesan Guruswami, Reihaneh Safavi-Naini, and Huaxiong Wang; licensed under Creative Commons License CC-BY. application/pdf |
spellingShingle | Science::Mathematics Secret Sharing Scheme Wiretap Channel Lin, Fuchun Cheraghchi, Mahdi Guruswami, Venkatesan Safavi-Naini, Reihaneh Wang, Huaxiong Secret sharing with binary shares |
title | Secret sharing with binary shares |
title_full | Secret sharing with binary shares |
title_fullStr | Secret sharing with binary shares |
title_full_unstemmed | Secret sharing with binary shares |
title_short | Secret sharing with binary shares |
title_sort | secret sharing with binary shares |
topic | Science::Mathematics Secret Sharing Scheme Wiretap Channel |
url | https://hdl.handle.net/10356/142982 |
work_keys_str_mv | AT linfuchun secretsharingwithbinaryshares AT cheraghchimahdi secretsharingwithbinaryshares AT guruswamivenkatesan secretsharingwithbinaryshares AT safavinainireihaneh secretsharingwithbinaryshares AT wanghuaxiong secretsharingwithbinaryshares |