Chiral plasmons with twisted atomic bilayers
van der Waals heterostructures of atomically thin layers with rotational misalignments, such as twisted bilayer graphene, feature interesting structural moiré superlattices. Because of the quantum coupling between the twisted atomic layers, light-matter interaction is inherently chiral; as such, the...
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/145766 |
_version_ | 1811682824350072832 |
---|---|
author | Lin, Xiao Liu, Zifei Stauber, Tobias Gómez-Santos, Guillermo Gao, Fei Chen, Hongsheng Zhang, Baile Low, Tony |
author2 | School of Physical and Mathematical Sciences |
author_facet | School of Physical and Mathematical Sciences Lin, Xiao Liu, Zifei Stauber, Tobias Gómez-Santos, Guillermo Gao, Fei Chen, Hongsheng Zhang, Baile Low, Tony |
author_sort | Lin, Xiao |
collection | NTU |
description | van der Waals heterostructures of atomically thin layers with rotational misalignments, such as twisted bilayer graphene, feature interesting structural moiré superlattices. Because of the quantum coupling between the twisted atomic layers, light-matter interaction is inherently chiral; as such, they provide a promising platform for chiral plasmons in the extreme nanoscale. However, while the interlayer quantum coupling can be significant, its influence on chiral plasmons still remains elusive. Here we present the general solutions from full Maxwell equations of chiral plasmons in twisted atomic bilayers, with the consideration of interlayer quantum coupling. We find twisted atomic bilayers have a direct correspondence to the chiral metasurface, which simultaneously possesses chiral and magnetic surface conductivities, besides the common electric surface conductivity. In other words, the interlayer quantum coupling in twisted van der Waals heterostructures may facilitate the construction of various (e.g., bi-anisotropic) atomically-thin metasurfaces. Moreover, the chiral surface conductivity, determined by the interlayer quantum coupling, determines the existence of chiral plasmons and leads to a unique phase relationship (i.e., ±π/2 phase difference) between their transverse-electric (TE) and transverse-magnetic (TM) wave components. Importantly, such a unique phase relationship for chiral plasmons can be exploited to construct the missing longitudinal spin of plasmons, besides the common transverse spin of plasmons. |
first_indexed | 2024-10-01T04:02:59Z |
format | Journal Article |
id | ntu-10356/145766 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T04:02:59Z |
publishDate | 2021 |
record_format | dspace |
spelling | ntu-10356/1457662023-02-28T19:56:32Z Chiral plasmons with twisted atomic bilayers Lin, Xiao Liu, Zifei Stauber, Tobias Gómez-Santos, Guillermo Gao, Fei Chen, Hongsheng Zhang, Baile Low, Tony School of Physical and Mathematical Sciences Centre for Disruptive Photonic Technologies (CDPT) Science::Physics Light-matter Interaction Near-field Optics van der Waals heterostructures of atomically thin layers with rotational misalignments, such as twisted bilayer graphene, feature interesting structural moiré superlattices. Because of the quantum coupling between the twisted atomic layers, light-matter interaction is inherently chiral; as such, they provide a promising platform for chiral plasmons in the extreme nanoscale. However, while the interlayer quantum coupling can be significant, its influence on chiral plasmons still remains elusive. Here we present the general solutions from full Maxwell equations of chiral plasmons in twisted atomic bilayers, with the consideration of interlayer quantum coupling. We find twisted atomic bilayers have a direct correspondence to the chiral metasurface, which simultaneously possesses chiral and magnetic surface conductivities, besides the common electric surface conductivity. In other words, the interlayer quantum coupling in twisted van der Waals heterostructures may facilitate the construction of various (e.g., bi-anisotropic) atomically-thin metasurfaces. Moreover, the chiral surface conductivity, determined by the interlayer quantum coupling, determines the existence of chiral plasmons and leads to a unique phase relationship (i.e., ±π/2 phase difference) between their transverse-electric (TE) and transverse-magnetic (TM) wave components. Importantly, such a unique phase relationship for chiral plasmons can be exploited to construct the missing longitudinal spin of plasmons, besides the common transverse spin of plasmons. Ministry of Education (MOE) Published version This work was sponsored by NSF/EFRI-1741660 the Singapore Ministry of Education [Grants No. MOE2018-T2-1-022(S), No. MOE2016-T3-1-006], Spain’s MINECO under Grants No. FIS2017-82260-P, No. PGC2018-096955-B-C42, No. CEX2018-000805-M as well as by the CSIC Research Platform on Quantum Technologies PTI-001, and Germany’s Deutsche Forschungsgemeinschaft (DFG) via SFB 1277. This work at Zhejiang University was sponsored by the National Natural Science Foundation of China (NNSFC) under Grants No. 61801426, No. 61625502, No. 11961141010, and No. 61975176, the Top-Notch Young Talents Program of China, the Zhejiang Provincial Natural Science Foundation under Grants No. Z20F010018, and the Fundamental Research Funds for the Central Universities. 2021-01-07T06:33:16Z 2021-01-07T06:33:16Z 2020 Journal Article Lin, X., Liu, Z., Stauber, T., Gómez-Santos, G., Gao, F., Chen, H., . . . Low, T. (2020). Chiral plasmons with twisted atomic bilayers. Physical Review Letters, 125(7), 077401-. doi:10.1103/PhysRevLett.125.077401 0031-9007 https://hdl.handle.net/10356/145766 10.1103/PhysRevLett.125.077401 32857562 7 125 en MOE2018‐T2‐1‐022 (S) MOE2016‐T3‐1‐006 Physical Review Letters 10.21979/N9/ESXXZS © 2020 American Physical Society (APS). All rights reserved. This paper was published in Physical Review Letters and is made available with permission of American Physical Society (APS). application/pdf |
spellingShingle | Science::Physics Light-matter Interaction Near-field Optics Lin, Xiao Liu, Zifei Stauber, Tobias Gómez-Santos, Guillermo Gao, Fei Chen, Hongsheng Zhang, Baile Low, Tony Chiral plasmons with twisted atomic bilayers |
title | Chiral plasmons with twisted atomic bilayers |
title_full | Chiral plasmons with twisted atomic bilayers |
title_fullStr | Chiral plasmons with twisted atomic bilayers |
title_full_unstemmed | Chiral plasmons with twisted atomic bilayers |
title_short | Chiral plasmons with twisted atomic bilayers |
title_sort | chiral plasmons with twisted atomic bilayers |
topic | Science::Physics Light-matter Interaction Near-field Optics |
url | https://hdl.handle.net/10356/145766 |
work_keys_str_mv | AT linxiao chiralplasmonswithtwistedatomicbilayers AT liuzifei chiralplasmonswithtwistedatomicbilayers AT staubertobias chiralplasmonswithtwistedatomicbilayers AT gomezsantosguillermo chiralplasmonswithtwistedatomicbilayers AT gaofei chiralplasmonswithtwistedatomicbilayers AT chenhongsheng chiralplasmonswithtwistedatomicbilayers AT zhangbaile chiralplasmonswithtwistedatomicbilayers AT lowtony chiralplasmonswithtwistedatomicbilayers |