Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution

Recently, Knowledge Graph Embedding (KGE) has attracted considerable research efforts, since it simplifies the manipulation while preserving the inherent structure of the KG. However to some extent, most existing KGE approaches ignore the historical changes of structural information involved in dyna...

Full description

Bibliographic Details
Main Authors: Tang, Xiaoli, Yuan, Rui, Li, Qianyu, Wang, Tengyun, Yang, Haizhi, Cai, Yundong, Song, Hengjie
Other Authors: School of Computer Science and Engineering
Format: Journal Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/145797
_version_ 1811690332884041728
author Tang, Xiaoli
Yuan, Rui
Li, Qianyu
Wang, Tengyun
Yang, Haizhi
Cai, Yundong
Song, Hengjie
author2 School of Computer Science and Engineering
author_facet School of Computer Science and Engineering
Tang, Xiaoli
Yuan, Rui
Li, Qianyu
Wang, Tengyun
Yang, Haizhi
Cai, Yundong
Song, Hengjie
author_sort Tang, Xiaoli
collection NTU
description Recently, Knowledge Graph Embedding (KGE) has attracted considerable research efforts, since it simplifies the manipulation while preserving the inherent structure of the KG. However to some extent, most existing KGE approaches ignore the historical changes of structural information involved in dynamic knowledge graphs (DKGs). To deal with this problem, this paper presents a Timespan-aware Dynamic knowledge Graph Embedding Evolution (TDG2E) method that considers temporal evolving process of DKGs. The major innovations of our paper are two-fold. Firstly, a Gated Recurrent Units (GRU) based model is utilized in TDG2E to deal with the dependency among sub-KGs that is inevitably involved in the learning process of the dynamic knowledge graph embedding. Furthermore, we incorporate an auxiliary loss to supervise the learning process of the next sub-KG by utilizing previous structural information (i.e., the hidden state of GRU). In contrast with existing approaches in the literature (e.g., HyTE and t-TransE), TDG2E preserves structural information of current sub-KG and the temporal evolving process of the DKG simultaneously. Secondly, to further deal with the time unbalance issue underlying the DKGs, a Timespan Gate is designed in GRU. It makes TDG2E possible to model the temporal evolving process of DKGs more effectively by incorporating the timespan between adjacent sub-KGs. Extensive experiments on two large temporal datasets (i.e., YAGO11k and Wikidata12k) extracted from real-world KGs validate that the proposed TDG2E significantly outperforms traditional KGE methods in terms of Mean Rank and Hit Rate.
first_indexed 2024-10-01T06:02:19Z
format Journal Article
id ntu-10356/145797
institution Nanyang Technological University
language English
last_indexed 2024-10-01T06:02:19Z
publishDate 2021
record_format dspace
spelling ntu-10356/1457972021-01-08T03:47:29Z Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution Tang, Xiaoli Yuan, Rui Li, Qianyu Wang, Tengyun Yang, Haizhi Cai, Yundong Song, Hengjie School of Computer Science and Engineering Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) Engineering::Computer science and engineering Knowledge Graph Embedding Gated Recurrent Units Recently, Knowledge Graph Embedding (KGE) has attracted considerable research efforts, since it simplifies the manipulation while preserving the inherent structure of the KG. However to some extent, most existing KGE approaches ignore the historical changes of structural information involved in dynamic knowledge graphs (DKGs). To deal with this problem, this paper presents a Timespan-aware Dynamic knowledge Graph Embedding Evolution (TDG2E) method that considers temporal evolving process of DKGs. The major innovations of our paper are two-fold. Firstly, a Gated Recurrent Units (GRU) based model is utilized in TDG2E to deal with the dependency among sub-KGs that is inevitably involved in the learning process of the dynamic knowledge graph embedding. Furthermore, we incorporate an auxiliary loss to supervise the learning process of the next sub-KG by utilizing previous structural information (i.e., the hidden state of GRU). In contrast with existing approaches in the literature (e.g., HyTE and t-TransE), TDG2E preserves structural information of current sub-KG and the temporal evolving process of the DKG simultaneously. Secondly, to further deal with the time unbalance issue underlying the DKGs, a Timespan Gate is designed in GRU. It makes TDG2E possible to model the temporal evolving process of DKGs more effectively by incorporating the timespan between adjacent sub-KGs. Extensive experiments on two large temporal datasets (i.e., YAGO11k and Wikidata12k) extracted from real-world KGs validate that the proposed TDG2E significantly outperforms traditional KGE methods in terms of Mean Rank and Hit Rate. Published version 2021-01-08T03:47:29Z 2021-01-08T03:47:29Z 2020 Journal Article Tang, X., Yuan, R., Li, Q., Wang, T., Yang, H., Cai, Y., & Song, H. (2020). Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution. IEEE Access, 8, 6849-6860. doi:10.1109/access.2020.2964028 2169-3536 https://hdl.handle.net/10356/145797 10.1109/ACCESS.2020.2964028 8 6849 6860 en IEEE Access © 2020 IEEE. This journal is 100% open access, which means that all content is freely available without charge to users or their institutions. All articles accepted after 12 June 2019 are published under a CC BY 4.0 license, and the author retains copyright. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, as long as proper attribution is given. application/pdf
spellingShingle Engineering::Computer science and engineering
Knowledge Graph Embedding
Gated Recurrent Units
Tang, Xiaoli
Yuan, Rui
Li, Qianyu
Wang, Tengyun
Yang, Haizhi
Cai, Yundong
Song, Hengjie
Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution
title Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution
title_full Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution
title_fullStr Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution
title_full_unstemmed Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution
title_short Timespan-aware dynamic knowledge graph embedding by incorporating temporal evolution
title_sort timespan aware dynamic knowledge graph embedding by incorporating temporal evolution
topic Engineering::Computer science and engineering
Knowledge Graph Embedding
Gated Recurrent Units
url https://hdl.handle.net/10356/145797
work_keys_str_mv AT tangxiaoli timespanawaredynamicknowledgegraphembeddingbyincorporatingtemporalevolution
AT yuanrui timespanawaredynamicknowledgegraphembeddingbyincorporatingtemporalevolution
AT liqianyu timespanawaredynamicknowledgegraphembeddingbyincorporatingtemporalevolution
AT wangtengyun timespanawaredynamicknowledgegraphembeddingbyincorporatingtemporalevolution
AT yanghaizhi timespanawaredynamicknowledgegraphembeddingbyincorporatingtemporalevolution
AT caiyundong timespanawaredynamicknowledgegraphembeddingbyincorporatingtemporalevolution
AT songhengjie timespanawaredynamicknowledgegraphembeddingbyincorporatingtemporalevolution