LEED : label-free expression editing via disentanglement
Recent studies on facial expression editing have obtained very promising progress. On the other hand, existing methods face the constraint of requiring a large amount of expression labels which are often expensive and time-consuming to collect. This paper presents an innovative label-free expression...
Huvudupphovsmän: | Wu, Rongliang, Lu, Shijian |
---|---|
Övriga upphovsmän: | School of Computer Science and Engineering |
Materialtyp: | Conference Paper |
Språk: | English |
Publicerad: |
2021
|
Ämnen: | |
Länkar: | https://hdl.handle.net/10356/146194 |
Liknande verk
Liknande verk
-
POCE: pose-controllable expression editing
av: Wu, Rongliang, et al.
Publicerad: (2024) -
Cascade EF-GAN : progressive facial expression editing with local focuses
av: Wu, Rongliang, et al.
Publicerad: (2021) -
GMLight: lighting estimation via geometric distribution approximation
av: Zhan, Fangneng, et al.
Publicerad: (2022) -
Deep disentangling learning for real-world image enlightening and restoration
av: Chan, Yi Xuan
Publicerad: (2022) -
Deep learning for facial expression editing
av: Wu, Rongliang
Publicerad: (2023)