Collaborative adaptation for energy-efficient heterogeneous mobile SoCs

Heterogeneous Mobile System-on-Chips (SoCs) containing CPU and GPU cores are becoming prevalent in embedded computing, and they need to execute applications concurrently. However, existing run-time management approaches do not perform adaptive mapping and thread-partitioning of applications while ex...

Full description

Bibliographic Details
Main Authors: Singh, Amit Kumar, Basireddy, Karunakar Reddy, Prakash, Alok, Merrett, Geoff V., Al-Hashimi, Bashir M.
Other Authors: School of Computer Science and Engineering
Format: Journal Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/147719
Description
Summary:Heterogeneous Mobile System-on-Chips (SoCs) containing CPU and GPU cores are becoming prevalent in embedded computing, and they need to execute applications concurrently. However, existing run-time management approaches do not perform adaptive mapping and thread-partitioning of applications while exploiting both CPU and GPU cores at the same time. In this paper, we propose an adaptive mapping and thread-partitioning approach for energy-efficient execution of concurrent OpenCL applications on both CPU and GPU cores while satisfying performance requirements. To start execution of concurrent applications, the approach makes mapping (number of cores and operating frequencies) and partitioning (distribution of threads between CPU and GPU) decisions to satisfy performance requirements for each application. The mapping and partitioning decisions are made by having a collaboration between the CPU and GPU cores' processing capabilities such that balanced execution can be performed. During execution, adaptation is triggered when new application(s) arrive, or an executing one finishes, that frees cores. The adaptation process identifies a new mapping and thread-partitioning in a similar collaborative manner for remaining applications provided it leads to an improvement in energy efficiency. The proposed approach is experimentally validated on the Odroid-XU3 hardware platform with varying set of applications. Results show an average energy saving of 37%, compared to existing approaches while satisfying the performance requirements.