Analysis of ventilation position to reduce piston effect in tunnels

As a train moves inside a tunnel, a phenomenon known as the piston effect occurs. This effect refers to the forced movement of air flow inside a tunnel or shaft due to the movement of vehicles within. Since natural ventilation is achieved via the piston effect, external sources of power are not requ...

Full description

Bibliographic Details
Main Author: Sim, Chun Han
Other Authors: Marcos
Format: Final Year Project (FYP)
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/149960
_version_ 1811678747225489408
author Sim, Chun Han
author2 Marcos
author_facet Marcos
Sim, Chun Han
author_sort Sim, Chun Han
collection NTU
description As a train moves inside a tunnel, a phenomenon known as the piston effect occurs. This effect refers to the forced movement of air flow inside a tunnel or shaft due to the movement of vehicles within. Since natural ventilation is achieved via the piston effect, external sources of power are not required to ventilate the tunnels or shafts [1]. However, the large forces, created as a result of the piston effect, act on installations around the tunnel as well as reduce passenger comfort [2]. In Singapore, the Mass Rapid Transport (MRT) System takes up 43.8% of public transport ridership [3]. With only the two oldest train lines being built above ground, the piston effect is applicable in Singapore’s context. Despite the wealth of existing literature on the piston effect, there are few properly organised sources of reliable information [1]. Furthermore, past research done on ventilation systems are either oversimplified, or have omitted the piston effect entirely. The study aims to analyse the flow field caused by the piston effect through the use of computer simulations on flow fields. The Computational Fluid Dynamics (CFD) software used is ANSYS Fluent. This software allows for the simulation of complex flow problems, while taking into account heat transfer, turbulence, as well as the flow’s reaction to the physical model, all of which are factors which can be defined by the user. As such, accurate estimations can be done without the need for physical experiments. Subsequently, measures to reduce forces caused by the piston effect are proposed. Various types of ventilation systems will first be discussed. Afterwards, appropriate simulations of a moving train will be done, where the method of dynamic meshing, a function in ANSYS Fluent requiring C-coded User-Defined Functions (UDFs), is inserted and employed. Thereafter, by varying the distance of the air inlets and outlets, the corresponding pressure and forces will be analysed. The results of the study show that using inlets spaced 4m apart provides better ventilation in tunnels. This result was obtained through the analysis of the velocity magnitude and pressure experienced at the sides of the tunnel.
first_indexed 2024-10-01T02:58:10Z
format Final Year Project (FYP)
id ntu-10356/149960
institution Nanyang Technological University
language English
last_indexed 2024-10-01T02:58:10Z
publishDate 2021
publisher Nanyang Technological University
record_format dspace
spelling ntu-10356/1499602021-05-21T00:56:23Z Analysis of ventilation position to reduce piston effect in tunnels Sim, Chun Han Marcos School of Mechanical and Aerospace Engineering Yao Xin marcos@ntu.edu.sg, yaoxin@ntu.edu.sg Engineering::Mechanical engineering As a train moves inside a tunnel, a phenomenon known as the piston effect occurs. This effect refers to the forced movement of air flow inside a tunnel or shaft due to the movement of vehicles within. Since natural ventilation is achieved via the piston effect, external sources of power are not required to ventilate the tunnels or shafts [1]. However, the large forces, created as a result of the piston effect, act on installations around the tunnel as well as reduce passenger comfort [2]. In Singapore, the Mass Rapid Transport (MRT) System takes up 43.8% of public transport ridership [3]. With only the two oldest train lines being built above ground, the piston effect is applicable in Singapore’s context. Despite the wealth of existing literature on the piston effect, there are few properly organised sources of reliable information [1]. Furthermore, past research done on ventilation systems are either oversimplified, or have omitted the piston effect entirely. The study aims to analyse the flow field caused by the piston effect through the use of computer simulations on flow fields. The Computational Fluid Dynamics (CFD) software used is ANSYS Fluent. This software allows for the simulation of complex flow problems, while taking into account heat transfer, turbulence, as well as the flow’s reaction to the physical model, all of which are factors which can be defined by the user. As such, accurate estimations can be done without the need for physical experiments. Subsequently, measures to reduce forces caused by the piston effect are proposed. Various types of ventilation systems will first be discussed. Afterwards, appropriate simulations of a moving train will be done, where the method of dynamic meshing, a function in ANSYS Fluent requiring C-coded User-Defined Functions (UDFs), is inserted and employed. Thereafter, by varying the distance of the air inlets and outlets, the corresponding pressure and forces will be analysed. The results of the study show that using inlets spaced 4m apart provides better ventilation in tunnels. This result was obtained through the analysis of the velocity magnitude and pressure experienced at the sides of the tunnel. Bachelor of Engineering (Mechanical Engineering) 2021-05-21T00:56:22Z 2021-05-21T00:56:22Z 2021 Final Year Project (FYP) Sim, C. H. (2021). Analysis of ventilation position to reduce piston effect in tunnels. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/149960 https://hdl.handle.net/10356/149960 en application/pdf Nanyang Technological University
spellingShingle Engineering::Mechanical engineering
Sim, Chun Han
Analysis of ventilation position to reduce piston effect in tunnels
title Analysis of ventilation position to reduce piston effect in tunnels
title_full Analysis of ventilation position to reduce piston effect in tunnels
title_fullStr Analysis of ventilation position to reduce piston effect in tunnels
title_full_unstemmed Analysis of ventilation position to reduce piston effect in tunnels
title_short Analysis of ventilation position to reduce piston effect in tunnels
title_sort analysis of ventilation position to reduce piston effect in tunnels
topic Engineering::Mechanical engineering
url https://hdl.handle.net/10356/149960
work_keys_str_mv AT simchunhan analysisofventilationpositiontoreducepistoneffectintunnels