Summary: | Electroencephalography (EEG) measures the neuronal activities in different
brain regions via electrodes. Many existing studies on EEG-based emotion
recognition do not fully exploit the topology of EEG channels. In this paper,
we propose a regularized graph neural network (RGNN) for EEG-based emotion
recognition. RGNN considers the biological topology among different brain
regions to capture both local and global relations among different EEG
channels. Specifically, we model the inter-channel relations in EEG signals via
an adjacency matrix in a graph neural network where the connection and
sparseness of the adjacency matrix are inspired by neuroscience theories of
human brain organization. In addition, we propose two regularizers, namely
node-wise domain adversarial training (NodeDAT) and emotion-aware distribution
learning (EmotionDL), to better handle cross-subject EEG variations and noisy
labels, respectively. Extensive experiments on two public datasets, SEED and
SEED-IV, demonstrate the superior performance of our model than
state-of-the-art models in most experimental settings. Moreover, ablation
studies show that the proposed adjacency matrix and two regularizers contribute
consistent and significant gain to the performance of our RGNN model. Finally,
investigations on the neuronal activities reveal important brain regions and
inter-channel relations for EEG-based emotion recognition.
|