Summary: | The generation and verification of large-scale entanglement are essential to
the development of quantum technologies. In this paper, we present an efficient
scheme to generate genuine multipartite entanglement of a large number of
qubits by using the Heisenberg interaction. This method can be conveniently
implemented in various physical platforms, including superconducting,
trapped-ion, and cold-atom systems. In order to characterize the entanglement
of the output quantum state, we generalize the stabilizer formalism and develop
an entanglement witness method. In particular, we design a generic searching
algorithm to optimize entanglement witness with a minimal number of measurement
settings under a given noise level. From the perspective of practical
applications, we numerically study the trade-off between the experiment
efficiency and the detection robustness.
|