Summary: | Exogenous sources of amino acids are essential nutrients to fuel cancer growth. Here, the increased demand for amino acid displayed by cancer cells is unconventionally exploited as a design principle to replete cancer cells with apoptosis inducing nanoscopic porous amino acid mimics (Nano-PAAM). A small library consisting of nine essential amino acids nanoconjugates (30 nm) are synthesized, and the in vitro anticancer activity is evaluated. Among the Nano-PAAMs, l-phenylalanine functionalized Nano-PAAM (Nano-pPAAM) has emerged as a novel nanotherapeutics with excellent intrinsic anticancer and cancer-selective properties. The therapeutic efficacy of Nano-pPAAM against a panel of human breast, gastric, and skin cancer cells could be ascribed to the specific targeting of the overexpressed human large neutral amino acid transporter SLC7A5 (LAT-1) in cancer cells, and its intracellular reactive oxygen species (ROS) inducing properties of the nanoporous core. At the mechanistic level, it is revealed that Nano-pPAAM could activate both the extrinsic and intrinsic apoptosis pathways to exert a potent "double-whammy" anticancer effect. The potential clinical utility of Nano-pPAAM is further investigated using an MDA-MB-231 xenograft in NOD scid gamma mice, where an overall suppression of tumor growth by 60% is achieved without the aid of any drugs or application of external stimuli.
|