Layer Hall effect in a 2D topological axion antiferromagnet

Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignm...

Full description

Bibliographic Details
Main Authors: Gao, Anyuan, Liu, Yu-Fei, Hu, Chaowei, Qiu, Jian-Xiang, Tzschaschel, Christian, Ghosh, Barun, Ho, Sheng-Chin, Bérubé, Damien, Chen, Rui, Sun, Haipeng, Zhang, Zhaowei, Zhang, Xin-Yue, Wang, Yu-Xuan, Wang, Naizhou, Huang, Zumeng, Felser, Claudia, Agarwal, Amit, Ding, Thomas, Tien, Hung-Ju, Akey, Austin, Gardener, Jules, Singh, Bahadur, Watanabe, Kenji, Taniguchi, Takashi, Burch, Kenneth S., Bell, David C., Zhou, Brian B., Gao, Weibo, Lu, Hai-Zhou, Bansil, Arun, Lin, Hsin, Chang, Tay-Rong, Fu, Liang, Ma, Qiong, Ni, Ni, Xu, Su-Yang
Other Authors: School of Physical and Mathematical Sciences
Format: Journal Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156342
_version_ 1811690813871095808
author Gao, Anyuan
Liu, Yu-Fei
Hu, Chaowei
Qiu, Jian-Xiang
Tzschaschel, Christian
Ghosh, Barun
Ho, Sheng-Chin
Bérubé, Damien
Chen, Rui
Sun, Haipeng
Zhang, Zhaowei
Zhang, Xin-Yue
Wang, Yu-Xuan
Wang, Naizhou
Huang, Zumeng
Felser, Claudia
Agarwal, Amit
Ding, Thomas
Tien, Hung-Ju
Akey, Austin
Gardener, Jules
Singh, Bahadur
Watanabe, Kenji
Taniguchi, Takashi
Burch, Kenneth S.
Bell, David C.
Zhou, Brian B.
Gao, Weibo
Lu, Hai-Zhou
Bansil, Arun
Lin, Hsin
Chang, Tay-Rong
Fu, Liang
Ma, Qiong
Ni, Ni
Xu, Su-Yang
author2 School of Physical and Mathematical Sciences
author_facet School of Physical and Mathematical Sciences
Gao, Anyuan
Liu, Yu-Fei
Hu, Chaowei
Qiu, Jian-Xiang
Tzschaschel, Christian
Ghosh, Barun
Ho, Sheng-Chin
Bérubé, Damien
Chen, Rui
Sun, Haipeng
Zhang, Zhaowei
Zhang, Xin-Yue
Wang, Yu-Xuan
Wang, Naizhou
Huang, Zumeng
Felser, Claudia
Agarwal, Amit
Ding, Thomas
Tien, Hung-Ju
Akey, Austin
Gardener, Jules
Singh, Bahadur
Watanabe, Kenji
Taniguchi, Takashi
Burch, Kenneth S.
Bell, David C.
Zhou, Brian B.
Gao, Weibo
Lu, Hai-Zhou
Bansil, Arun
Lin, Hsin
Chang, Tay-Rong
Fu, Liang
Ma, Qiong
Ni, Ni
Xu, Su-Yang
author_sort Gao, Anyuan
collection NTU
description Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.
first_indexed 2024-10-01T06:09:58Z
format Journal Article
id ntu-10356/156342
institution Nanyang Technological University
language English
last_indexed 2024-10-01T06:09:58Z
publishDate 2022
record_format dspace
spelling ntu-10356/1563422023-02-28T20:05:48Z Layer Hall effect in a 2D topological axion antiferromagnet Gao, Anyuan Liu, Yu-Fei Hu, Chaowei Qiu, Jian-Xiang Tzschaschel, Christian Ghosh, Barun Ho, Sheng-Chin Bérubé, Damien Chen, Rui Sun, Haipeng Zhang, Zhaowei Zhang, Xin-Yue Wang, Yu-Xuan Wang, Naizhou Huang, Zumeng Felser, Claudia Agarwal, Amit Ding, Thomas Tien, Hung-Ju Akey, Austin Gardener, Jules Singh, Bahadur Watanabe, Kenji Taniguchi, Takashi Burch, Kenneth S. Bell, David C. Zhou, Brian B. Gao, Weibo Lu, Hai-Zhou Bansil, Arun Lin, Hsin Chang, Tay-Rong Fu, Liang Ma, Qiong Ni, Ni Xu, Su-Yang School of Physical and Mathematical Sciences Science::Physics Topology Electric Field Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential. National Research Foundation (NRF) Submitted/Accepted version Z.Z., N.W., Z.H. and W.G. thank the Singapore National Research Foundation through its Competitive Research Program (CRP award no. NRF-CRP21-2018-0007, NRF-CRP22-2019-0004). 2022-04-17T08:51:25Z 2022-04-17T08:51:25Z 2021 Journal Article Gao, A., Liu, Y., Hu, C., Qiu, J., Tzschaschel, C., Ghosh, B., Ho, S., Bérubé, D., Chen, R., Sun, H., Zhang, Z., Zhang, X., Wang, Y., Wang, N., Huang, Z., Felser, C., Agarwal, A., Ding, T., Tien, H., ...Xu, S. (2021). Layer Hall effect in a 2D topological axion antiferromagnet. Nature, 595, 521-525. https://dx.doi.org/10.1038/s41586-021-03679-w 0028-0836 https://hdl.handle.net/10356/156342 10.1038/s41586-021-03679-w 34290425 2-s2.0-85110967125 595 521 525 en NRF-CRP21-2018-0007 NRF-CRP22-2019-0004 Nature © 2021 The Author(s), under exclusive licence to Springer Nature Limited. All rights reserved. This paper was published in Nature and is made available with permission of The Author(s). application/pdf
spellingShingle Science::Physics
Topology
Electric Field
Gao, Anyuan
Liu, Yu-Fei
Hu, Chaowei
Qiu, Jian-Xiang
Tzschaschel, Christian
Ghosh, Barun
Ho, Sheng-Chin
Bérubé, Damien
Chen, Rui
Sun, Haipeng
Zhang, Zhaowei
Zhang, Xin-Yue
Wang, Yu-Xuan
Wang, Naizhou
Huang, Zumeng
Felser, Claudia
Agarwal, Amit
Ding, Thomas
Tien, Hung-Ju
Akey, Austin
Gardener, Jules
Singh, Bahadur
Watanabe, Kenji
Taniguchi, Takashi
Burch, Kenneth S.
Bell, David C.
Zhou, Brian B.
Gao, Weibo
Lu, Hai-Zhou
Bansil, Arun
Lin, Hsin
Chang, Tay-Rong
Fu, Liang
Ma, Qiong
Ni, Ni
Xu, Su-Yang
Layer Hall effect in a 2D topological axion antiferromagnet
title Layer Hall effect in a 2D topological axion antiferromagnet
title_full Layer Hall effect in a 2D topological axion antiferromagnet
title_fullStr Layer Hall effect in a 2D topological axion antiferromagnet
title_full_unstemmed Layer Hall effect in a 2D topological axion antiferromagnet
title_short Layer Hall effect in a 2D topological axion antiferromagnet
title_sort layer hall effect in a 2d topological axion antiferromagnet
topic Science::Physics
Topology
Electric Field
url https://hdl.handle.net/10356/156342
work_keys_str_mv AT gaoanyuan layerhalleffectina2dtopologicalaxionantiferromagnet
AT liuyufei layerhalleffectina2dtopologicalaxionantiferromagnet
AT huchaowei layerhalleffectina2dtopologicalaxionantiferromagnet
AT qiujianxiang layerhalleffectina2dtopologicalaxionantiferromagnet
AT tzschaschelchristian layerhalleffectina2dtopologicalaxionantiferromagnet
AT ghoshbarun layerhalleffectina2dtopologicalaxionantiferromagnet
AT hoshengchin layerhalleffectina2dtopologicalaxionantiferromagnet
AT berubedamien layerhalleffectina2dtopologicalaxionantiferromagnet
AT chenrui layerhalleffectina2dtopologicalaxionantiferromagnet
AT sunhaipeng layerhalleffectina2dtopologicalaxionantiferromagnet
AT zhangzhaowei layerhalleffectina2dtopologicalaxionantiferromagnet
AT zhangxinyue layerhalleffectina2dtopologicalaxionantiferromagnet
AT wangyuxuan layerhalleffectina2dtopologicalaxionantiferromagnet
AT wangnaizhou layerhalleffectina2dtopologicalaxionantiferromagnet
AT huangzumeng layerhalleffectina2dtopologicalaxionantiferromagnet
AT felserclaudia layerhalleffectina2dtopologicalaxionantiferromagnet
AT agarwalamit layerhalleffectina2dtopologicalaxionantiferromagnet
AT dingthomas layerhalleffectina2dtopologicalaxionantiferromagnet
AT tienhungju layerhalleffectina2dtopologicalaxionantiferromagnet
AT akeyaustin layerhalleffectina2dtopologicalaxionantiferromagnet
AT gardenerjules layerhalleffectina2dtopologicalaxionantiferromagnet
AT singhbahadur layerhalleffectina2dtopologicalaxionantiferromagnet
AT watanabekenji layerhalleffectina2dtopologicalaxionantiferromagnet
AT taniguchitakashi layerhalleffectina2dtopologicalaxionantiferromagnet
AT burchkenneths layerhalleffectina2dtopologicalaxionantiferromagnet
AT belldavidc layerhalleffectina2dtopologicalaxionantiferromagnet
AT zhoubrianb layerhalleffectina2dtopologicalaxionantiferromagnet
AT gaoweibo layerhalleffectina2dtopologicalaxionantiferromagnet
AT luhaizhou layerhalleffectina2dtopologicalaxionantiferromagnet
AT bansilarun layerhalleffectina2dtopologicalaxionantiferromagnet
AT linhsin layerhalleffectina2dtopologicalaxionantiferromagnet
AT changtayrong layerhalleffectina2dtopologicalaxionantiferromagnet
AT fuliang layerhalleffectina2dtopologicalaxionantiferromagnet
AT maqiong layerhalleffectina2dtopologicalaxionantiferromagnet
AT nini layerhalleffectina2dtopologicalaxionantiferromagnet
AT xusuyang layerhalleffectina2dtopologicalaxionantiferromagnet