A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing
Transparent electrodes that form seamless contact and enable optical interrogation at the electrode-brain interface are potentially of high significance for neuroscience studies. Silk hydrogels can offer an ideal platform for transparent neural interfaces owing to their superior biocompatibility. Ho...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/156393 |
_version_ | 1826123019942100992 |
---|---|
author | Cui, Yajing Zhang, Fan Chen, Geng Yao, Lin Zhang, Nan Liu, Zhiyuan Li, Qingsong Zhang, Feilong Cui, Zequn Zhang, Keqin Li, Peng Cheng, Yuan Zhang, Shaomin Chen, Xiaodong |
author2 | School of Materials Science and Engineering |
author_facet | School of Materials Science and Engineering Cui, Yajing Zhang, Fan Chen, Geng Yao, Lin Zhang, Nan Liu, Zhiyuan Li, Qingsong Zhang, Feilong Cui, Zequn Zhang, Keqin Li, Peng Cheng, Yuan Zhang, Shaomin Chen, Xiaodong |
author_sort | Cui, Yajing |
collection | NTU |
description | Transparent electrodes that form seamless contact and enable optical interrogation at the electrode-brain interface are potentially of high significance for neuroscience studies. Silk hydrogels can offer an ideal platform for transparent neural interfaces owing to their superior biocompatibility. However, conventional silk hydrogels are too weak and have difficulties integrating with highly conductive and stretchable electronics. Here, a transparent and stretchable hydrogel electrode based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and PEGylated silk protein is reported. PEGylated silk protein with poly(ethylene glycol) diglycidyl ether (PEGDE) improves the Young's modulus to 1.51-10.73 MPa and the stretchability to ≈400% from conventional silk hydrogels (<10 kPa). The PEGylated silk also helps form a robust interface with PEDOT:PSS thin film, making the hydrogel electrode synergistically incorporate superior stretchability (≈260%), stable electrical performance (≈4 months), and a low sheet resistance (≈160 ± 56 Ω sq-1 ). Finally, the electrode facilitates efficient electrical recording, and stimulation with unobstructed optical interrogation and rat-brain imaging are demonstrated. The highly transparent and stretchable hydrogel electrode offers a practical tool for neuroscience and paves the way for a harmonized tissue-electrode interface. |
first_indexed | 2024-10-01T05:57:48Z |
format | Journal Article |
id | ntu-10356/156393 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T05:57:48Z |
publishDate | 2022 |
record_format | dspace |
spelling | ntu-10356/1563932023-07-14T16:05:41Z A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing Cui, Yajing Zhang, Fan Chen, Geng Yao, Lin Zhang, Nan Liu, Zhiyuan Li, Qingsong Zhang, Feilong Cui, Zequn Zhang, Keqin Li, Peng Cheng, Yuan Zhang, Shaomin Chen, Xiaodong School of Materials Science and Engineering Innovative Centre for Flexible Devices Max Planck-NTU Joint Lab for Artificial Senses Engineering::Materials Dual-Modal Probing Implantable Electrodes Transparent electrodes that form seamless contact and enable optical interrogation at the electrode-brain interface are potentially of high significance for neuroscience studies. Silk hydrogels can offer an ideal platform for transparent neural interfaces owing to their superior biocompatibility. However, conventional silk hydrogels are too weak and have difficulties integrating with highly conductive and stretchable electronics. Here, a transparent and stretchable hydrogel electrode based on poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and PEGylated silk protein is reported. PEGylated silk protein with poly(ethylene glycol) diglycidyl ether (PEGDE) improves the Young's modulus to 1.51-10.73 MPa and the stretchability to ≈400% from conventional silk hydrogels (<10 kPa). The PEGylated silk also helps form a robust interface with PEDOT:PSS thin film, making the hydrogel electrode synergistically incorporate superior stretchability (≈260%), stable electrical performance (≈4 months), and a low sheet resistance (≈160 ± 56 Ω sq-1 ). Finally, the electrode facilitates efficient electrical recording, and stimulation with unobstructed optical interrogation and rat-brain imaging are demonstrated. The highly transparent and stretchable hydrogel electrode offers a practical tool for neuroscience and paves the way for a harmonized tissue-electrode interface. Agency for Science, Technology and Research (A*STAR) National Research Foundation (NRF) Submitted/Accepted version The authors thank the financial support from the National Research Foundation, Prime Minister’s office, Singapore, under its NRF Investigatorship (NRF-NRFI2017-07). S.Z. and F.Z. thank the Chinese National Key R&D Program (2017YFE915500) and the National Natural Science Foundation of China (31371001). Y.C. and N.Z. are grateful for the supports from the Agency for Science, Technology and Research (A*STAR) and the use of A*STAR Computational Resource Centre, Singapore (ACRC) and National Supercomputing Centre, Singapore (NSCC). P.L. and L.Y. thank the support by National Natural Science Foundation of China (62075189) and Zhejiang Lab (2018EB0ZX01). 2022-04-19T06:48:13Z 2022-04-19T06:48:13Z 2021 Journal Article Cui, Y., Zhang, F., Chen, G., Yao, L., Zhang, N., Liu, Z., Li, Q., Zhang, F., Cui, Z., Zhang, K., Li, P., Cheng, Y., Zhang, S. & Chen, X. (2021). A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Advanced Materials, 33(34), 2100221-. https://dx.doi.org/10.1002/adma.202100221 0935-9648 https://hdl.handle.net/10356/156393 10.1002/adma.202100221 34278616 2-s2.0-85110649594 34 33 2100221 en NRF-NRFI2017-07 Advanced Materials This is the peer reviewed version of the following article: Cui, Y., Zhang, F., Chen, G., Yao, L., Zhang, N., Liu, Z., Li, Q., Zhang, F., Cui, Z., Zhang, K., Li, P., Cheng, Y., Zhang, S. & Chen, X. (2021). A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Advanced Materials, 33(34), 2100221-, which has been published in final form at https://doi.org/10.1002/adma.202100221. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. application/pdf |
spellingShingle | Engineering::Materials Dual-Modal Probing Implantable Electrodes Cui, Yajing Zhang, Fan Chen, Geng Yao, Lin Zhang, Nan Liu, Zhiyuan Li, Qingsong Zhang, Feilong Cui, Zequn Zhang, Keqin Li, Peng Cheng, Yuan Zhang, Shaomin Chen, Xiaodong A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing |
title | A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing |
title_full | A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing |
title_fullStr | A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing |
title_full_unstemmed | A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing |
title_short | A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing |
title_sort | stretchable and transparent electrode based on pegylated silk fibroin for in vivo dual modal neural vascular activity probing |
topic | Engineering::Materials Dual-Modal Probing Implantable Electrodes |
url | https://hdl.handle.net/10356/156393 |
work_keys_str_mv | AT cuiyajing astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangfan astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT chengeng astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT yaolin astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangnan astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT liuzhiyuan astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT liqingsong astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangfeilong astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT cuizequn astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangkeqin astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT lipeng astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT chengyuan astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangshaomin astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT chenxiaodong astretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT cuiyajing stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangfan stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT chengeng stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT yaolin stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangnan stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT liuzhiyuan stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT liqingsong stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangfeilong stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT cuizequn stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangkeqin stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT lipeng stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT chengyuan stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT zhangshaomin stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing AT chenxiaodong stretchableandtransparentelectrodebasedonpegylatedsilkfibroinforinvivodualmodalneuralvascularactivityprobing |