Design and engineer a domestic use vertical farming unit for high rise homes
It is a commonly known fact that Singapore does not have a lot of land or area to produce its own crop. The few local food production brands are insufficient in providing for the entire population, leading to the nation’s reliance on food imports from other countries at high prices. However, since t...
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project (FYP) |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/157423 |
_version_ | 1826122115949002752 |
---|---|
author | Ng, Yu Jie |
author2 | Heng Kok Hui, John Gerard |
author_facet | Heng Kok Hui, John Gerard Ng, Yu Jie |
author_sort | Ng, Yu Jie |
collection | NTU |
description | It is a commonly known fact that Singapore does not have a lot of land or area to produce its own crop. The few local food production brands are insufficient in providing for the entire population, leading to the nation’s reliance on food imports from other countries at high prices. However, since the reliance on food supplies from other countries to feed the nation is not a sustainable solution in the long run, Singapore started its own campaign called the “30 by 30” vision that aims to grow 30% of the country’s nutritional needs by 2030.
As part of the efforts to achieve “30 by 30”, the aim of this project is to design and assemble a domestic-use indoor vertical farming unit, to increase Singaporeans’ involvement in growing food locally and integrate technology in the indoor farming units. The first part of the project consisted of building the said unit, using the Deep Flow Technique (DFT) and Nutrient Film Technique (NFT). An analysis was also conducted to investigate the efficiency and resource consumption of the setup. The second part of the project was to design and set up of an Internet of Things (IoT) system that automated the process of nutrient solution pH calibration, and wirelessly sent real-time data of the nutrient solution pH, along with ambient temperature and humidity, to remote users using Wi-Fi communication. |
first_indexed | 2024-10-01T05:43:13Z |
format | Final Year Project (FYP) |
id | ntu-10356/157423 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T05:43:13Z |
publishDate | 2022 |
publisher | Nanyang Technological University |
record_format | dspace |
spelling | ntu-10356/1574232023-03-04T20:15:30Z Design and engineer a domestic use vertical farming unit for high rise homes Ng, Yu Jie Heng Kok Hui, John Gerard School of Mechanical and Aerospace Engineering mkhheng@ntu.edu.sg Engineering::Aeronautical engineering It is a commonly known fact that Singapore does not have a lot of land or area to produce its own crop. The few local food production brands are insufficient in providing for the entire population, leading to the nation’s reliance on food imports from other countries at high prices. However, since the reliance on food supplies from other countries to feed the nation is not a sustainable solution in the long run, Singapore started its own campaign called the “30 by 30” vision that aims to grow 30% of the country’s nutritional needs by 2030. As part of the efforts to achieve “30 by 30”, the aim of this project is to design and assemble a domestic-use indoor vertical farming unit, to increase Singaporeans’ involvement in growing food locally and integrate technology in the indoor farming units. The first part of the project consisted of building the said unit, using the Deep Flow Technique (DFT) and Nutrient Film Technique (NFT). An analysis was also conducted to investigate the efficiency and resource consumption of the setup. The second part of the project was to design and set up of an Internet of Things (IoT) system that automated the process of nutrient solution pH calibration, and wirelessly sent real-time data of the nutrient solution pH, along with ambient temperature and humidity, to remote users using Wi-Fi communication. Bachelor of Engineering (Aerospace Engineering) 2022-05-15T04:25:31Z 2022-05-15T04:25:31Z 2022 Final Year Project (FYP) Ng, Y. J. (2022). Design and engineer a domestic use vertical farming unit for high rise homes. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/157423 https://hdl.handle.net/10356/157423 en application/pdf Nanyang Technological University |
spellingShingle | Engineering::Aeronautical engineering Ng, Yu Jie Design and engineer a domestic use vertical farming unit for high rise homes |
title | Design and engineer a domestic use vertical farming unit for high rise homes |
title_full | Design and engineer a domestic use vertical farming unit for high rise homes |
title_fullStr | Design and engineer a domestic use vertical farming unit for high rise homes |
title_full_unstemmed | Design and engineer a domestic use vertical farming unit for high rise homes |
title_short | Design and engineer a domestic use vertical farming unit for high rise homes |
title_sort | design and engineer a domestic use vertical farming unit for high rise homes |
topic | Engineering::Aeronautical engineering |
url | https://hdl.handle.net/10356/157423 |
work_keys_str_mv | AT ngyujie designandengineeradomesticuseverticalfarmingunitforhighrisehomes |