Deep learning for style and domain transfer
The diversity of painting styles provides rich visual information for constructing artistic images. In this project, two image style transfer algorithms based on deep learning are proposed and tried. One is CNN-based algorithm, which uses pre-trained convolutional neural network (CNN) to extract the...
Үндсэн зохиолч: | Ni, Anqi |
---|---|
Бусад зохиолчид: | Wen Bihan |
Формат: | Final Year Project (FYP) |
Хэл сонгох: | English |
Хэвлэсэн: |
Nanyang Technological University
2022
|
Нөхцлүүд: | |
Онлайн хандалт: | https://hdl.handle.net/10356/158046 |
Ижил төстэй зүйлс
-
Real-time arbitrary style transfer via deep learning
-н: Wang, Zijian
Хэвлэсэн: (2021) -
Learning to recognize objects by adaptive knowledge transfer
-н: Tao, Qingyi
Хэвлэсэн: (2021) -
Skin cancer detection with deep learning
-н: Gupta, Jay
Хэвлэсэн: (2022) -
Attack on training effort of deep learning
-н: Ho, Tony Man Tung
Хэвлэсэн: (2022) -
Detecting the crowdedness of people by deep learning
-н: Heng, Seng En
Хэвлэсэн: (2021)