Design of a new somatosensory stimulus delivery system to assess hand functions

Neurological injury such as stroke typically results in impaired motion and sensation in upper limbs. However, sensory rehabilitation for the hand is often neglected. Main causes cited are lack of time and lack of resources to appropriate quantified assessments. In this project, a prototype was d...

Full description

Bibliographic Details
Main Author: Tan, Cher Yang
Other Authors: Ang Wei Tech
Format: Final Year Project (FYP)
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/159035
_version_ 1811694709469347840
author Tan, Cher Yang
author2 Ang Wei Tech
author_facet Ang Wei Tech
Tan, Cher Yang
author_sort Tan, Cher Yang
collection NTU
description Neurological injury such as stroke typically results in impaired motion and sensation in upper limbs. However, sensory rehabilitation for the hand is often neglected. Main causes cited are lack of time and lack of resources to appropriate quantified assessments. In this project, a prototype was designed to provide two different kinds of stimuli to the thumb, index and middle finger of the right hand. These stimuli were rotation about the metacarpal joint, and thermotactile stimulus at the distal phalanx of the fingers. These stimuli were provided using a remote centre of motion mechanism and Peltier modules. The accuracy of the prototype in rotating the fingers about the metacarpal joint was assessed using a potentiometer jig for the thumb and an accelerometer for the index and middle finger. The accuracy of the prototype in providing thermotactile stimuli was verified using a precise infrared thermometer. When referenced against these external measuring devices, the level of stimuli reported by the prototype against the measurement of these external devices were consistent with one another, showcasing the accuracy of the prototype in providing accurate levels of stimuli. Preparation time was tested with a group of healthy adults and proven to be short with an average time of 2 minutes . In conclusion, the prototype was evaluated to be able to provide accurate level of stimuli for two of the three stimuli that was to be provided. Several limitations were identified. Firstly, materials used for the construction of the prototype were not strong and thus the prototype could bend and flex. Next, large amounts of electronics not connected using a printed circuit board caused the prototype to be bulky. The temperature range of the thermo tactile stimuli and the speed at which it reached its setpoint could be increased.
first_indexed 2024-10-01T07:11:53Z
format Final Year Project (FYP)
id ntu-10356/159035
institution Nanyang Technological University
language English
last_indexed 2024-10-01T07:11:53Z
publishDate 2022
publisher Nanyang Technological University
record_format dspace
spelling ntu-10356/1590352023-03-04T20:20:18Z Design of a new somatosensory stimulus delivery system to assess hand functions Tan, Cher Yang Ang Wei Tech School of Mechanical and Aerospace Engineering WTAng@ntu.edu.sg Engineering::Mechanical engineering::Mechatronics Neurological injury such as stroke typically results in impaired motion and sensation in upper limbs. However, sensory rehabilitation for the hand is often neglected. Main causes cited are lack of time and lack of resources to appropriate quantified assessments. In this project, a prototype was designed to provide two different kinds of stimuli to the thumb, index and middle finger of the right hand. These stimuli were rotation about the metacarpal joint, and thermotactile stimulus at the distal phalanx of the fingers. These stimuli were provided using a remote centre of motion mechanism and Peltier modules. The accuracy of the prototype in rotating the fingers about the metacarpal joint was assessed using a potentiometer jig for the thumb and an accelerometer for the index and middle finger. The accuracy of the prototype in providing thermotactile stimuli was verified using a precise infrared thermometer. When referenced against these external measuring devices, the level of stimuli reported by the prototype against the measurement of these external devices were consistent with one another, showcasing the accuracy of the prototype in providing accurate levels of stimuli. Preparation time was tested with a group of healthy adults and proven to be short with an average time of 2 minutes . In conclusion, the prototype was evaluated to be able to provide accurate level of stimuli for two of the three stimuli that was to be provided. Several limitations were identified. Firstly, materials used for the construction of the prototype were not strong and thus the prototype could bend and flex. Next, large amounts of electronics not connected using a printed circuit board caused the prototype to be bulky. The temperature range of the thermo tactile stimuli and the speed at which it reached its setpoint could be increased. Bachelor of Engineering (Mechanical Engineering) 2022-06-09T02:23:30Z 2022-06-09T02:23:30Z 2022 Final Year Project (FYP) Tan, C. Y. (2022). Design of a new somatosensory stimulus delivery system to assess hand functions. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/159035 https://hdl.handle.net/10356/159035 en A003 application/pdf Nanyang Technological University
spellingShingle Engineering::Mechanical engineering::Mechatronics
Tan, Cher Yang
Design of a new somatosensory stimulus delivery system to assess hand functions
title Design of a new somatosensory stimulus delivery system to assess hand functions
title_full Design of a new somatosensory stimulus delivery system to assess hand functions
title_fullStr Design of a new somatosensory stimulus delivery system to assess hand functions
title_full_unstemmed Design of a new somatosensory stimulus delivery system to assess hand functions
title_short Design of a new somatosensory stimulus delivery system to assess hand functions
title_sort design of a new somatosensory stimulus delivery system to assess hand functions
topic Engineering::Mechanical engineering::Mechatronics
url https://hdl.handle.net/10356/159035
work_keys_str_mv AT tancheryang designofanewsomatosensorystimulusdeliverysystemtoassesshandfunctions