Convolutional neural networks with dynamic regularization
Regularization is commonly used for alleviating overfitting in machine learning. For convolutional neural networks (CNNs), regularization methods, such as DropBlock and Shake-Shake, have illustrated the improvement in the generalization performance. However, these methods lack a self-adaptive abilit...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/159626 |