Summary: | The volume reduction and subsequent solidification of soluble radionuclides have been known as the major challenges in global radioactive water management, with the urgent needs for new technology development. Thus, a novel forward osmosis (FO)-adsorption process was developed for decontamination of strontium-containing radioactive water. The FO filtration driven by the osmotic pressure difference across FO membrane was more cost- and energy-effective for pre-concentration and volume reduction of low-concentration radioactive water prior to solidification, whereas subsequent adsorption with a novel adsorbent offered an effective mean for high-efficiency fixation of soluble radioactive on adsorbent. Results showed that the FO unit in the proposed integrated process could lead to a concentration factor of 10, with 90% of water volume reduction. The concentrated stream with a smaller volume from FO was further treated through adsorption of Sr2+ by nanostructured layered sodium vanadosilicate which had an excellent adsorption capacity of 174.3 mg Sr2+/g. It was found that 96.8-99.9% of soluble Sr2+ in FO concentrate could be removed by adsorption within several seconds. As the result, an excellent solidification of Sr2+ with an ultimate concentration factor of 1000 was achieved in the proposed novel integrated FO-adsorption process. These clearly demonstrated that this process would offer an environmentally sustainable and economically viable engineering solution for high-efficiency decontamination of Sr2+-containing radioactive water.
|