Summary: | An effective forecast method to trigger Thermal Runaway (TR) warning in an early stage is essential for monitoring battery safety. In this article, we propose a novel data-driven approach to perform multistep ahead forecast accurately for battery TR state at cell-level. We formulate this forecasting task as an imbalance data classification task and propose meta thermal runaway forecasting neural network (Meta-TRFNN) to solve it. Essentially, we exploit high-dimensional thermal images along with low-dimensional temperature and voltage data to capture a more representative thermal profile. Moreover, we adapt a meta-learning framework to handle the data deficiency problem. We evaluate Meta-TRFNN on simulated samples and also explore its applicability in the real world with real samples. Although this classification task is highly imbalanced, Meta-TRFNN is still proven effective with limited historical information. Our further comparison experiments not only demonstrate the forecasting ability of Meta-TRFNN, but also validate the benefit of involving high-dimensional thermal images and the efficacy of meta-learning framework.
|