Detection of false data injection attacks in smart grid: a secure federated deep learning approach
As an important cyber-physical system (CPS), smart grid is highly vulnerable to cyber attacks. Amongst various types of attacks, false data injection attack (FDIA) proves to be one of the top-priority cyber-related issues and has received increasing attention in recent years. However, so far little...
Үндсэн зохиолчид: | Li, Yang, Wei, Xinhao, Li, Yuanzheng, Dong, Zhaoyang, Shahidehpour, Mohammad |
---|---|
Бусад зохиолчид: | School of Electrical and Electronic Engineering |
Формат: | Journal Article |
Хэл сонгох: | English |
Хэвлэсэн: |
2022
|
Нөхцлүүд: | |
Онлайн хандалт: | https://hdl.handle.net/10356/163148 |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Cybersecurity in Smart Grids: Detecting False Data Injection Attacks Utilizing Supervised Machine Learning Techniques
-н: Anwer Shees, зэрэг
Хэвлэсэн: (2024-11-01) -
Comparison of deep learning algorithms for site detection of false data injection attacks in smart grids
-н: Qassim Nasir, зэрэг
Хэвлэсэн: (2024-08-01) -
Distributed host-based collaborative detection for false data injection attacks in smart grid cyber-physical system
-н: Li, Beibei, зэрэг
Хэвлэсэн: (2017) -
Detecting False Data Injection Attacks Using Machine Learning-Based Approaches for Smart Grid Networks
-н: MD Jainul Abudin, зэрэг
Хэвлэсэн: (2024-05-01) -
Detection of False Data Injection Attack in Smart Grid Based on Extended Kalman and Smooth Variable Structure Filter
-н: Wenlong Jiang, зэрэг
Хэвлэсэн: (2025-01-01)