Tuning electronic structure and composition of FeNi nanoalloys for enhanced oxygen evolution electrocatalysis via a general synthesis strategy

Developing low-cost and efficient oxygen evolution electrocatalysts is key to decarbonization. A facile, surfactant-free, and gram-level biomass-assisted fast heating and cooling synthesis method is reported for synthesizing a series of carbon-encapsulated dense and uniform FeNi nanoalloys with a si...

Full description

Bibliographic Details
Main Authors: Wang, Yong, Nong, Wei, Gong, Na, Salim, Teddy, Luo, Mingchuan, Tan, Teck Leong, Hippalgaonkar, Kedar, Liu, Zheng, Huang, Yizhong
Other Authors: School of Materials Science and Engineering
Format: Journal Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/163405
Description
Summary:Developing low-cost and efficient oxygen evolution electrocatalysts is key to decarbonization. A facile, surfactant-free, and gram-level biomass-assisted fast heating and cooling synthesis method is reported for synthesizing a series of carbon-encapsulated dense and uniform FeNi nanoalloys with a single-phase face-centered-cubic solid-solution crystalline structure and an average particle size of sub-5 nm. This method also enables precise control of both size and composition. Electrochemical measurements show that among Fex Ni(1- x ) nanoalloys, Fe0.5 Ni0.5 has the best performance. Density functional theory calculations support the experimental findings and reveal that the optimally positioned d-band center of O-covered Fe0.5 Ni0.5 renders a half-filled antibonding state, resulting in moderate binding energies of key reaction intermediates. By increasing the total metal content from 25 to 60 wt%, the 60% Fe0.5 Ni0.5 /40% C shows an extraordinarily low overpotential of 219 mV at 10 mA cm-2 with a small Tafel slope of 23.2 mV dec-1 for the oxygen evolution reaction, which are much lower than most other FeNi-based electrocatalysts and even the state-of-the-art RuO2 . It also shows robust durability in an alkaline environment for at least 50 h. The gram-level fast heating and cooling synthesis method is extendable to a wide range of binary, ternary, quaternary nanoalloys, as well as quinary and denary high-entropy-alloy nanoparticles.