Summary: | Van der Waals layered indium selenide (InSe) is an emerging star of the 2D semiconducting materials because of its excellent fundamental properties, such as ultrahigh carrier mobility, layer-tunable bandgap, large elastic deformability, and rich polytypes. In addition, 2D layered indium selenide has demonstrated outstanding device performance including photodetector, field-effect transistor, memory and synapse, mechanical and gas sensor, which has offered a new chance to next-generation electrical and optoelectronic devices. This review presents a comprehensive summary of recent progress in 2D layered indium selenide. The novel fundamental properties and synthetic methods are summarized. Also, the indium selenide-based state-of-the-art electronic/optoelectronic devices, such as a functional field-effect transistor, photodetector, and mechanical and gas sensors are systematically summarized. The techniques to enhance the performances of devices are also discussed. Finally, a brief discussion on the challenges and future opportunities as a guideline for this field is provided.
|