Vanadium-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage

With the excessive consumption of non-renewable resources, the exploration of effective and durable materials is highly sought after in the field of sustainable energy conversion and storage system. In this aspect, metal-organic frameworks (MOFs) are a new class of crystalline porous organic-inorgan...

Full description

Bibliographic Details
Main Authors: Zhu, Jing, Chen, Xiaoyu, Thang, Ai Qin, Li, Fei-Long, Chen, Dong, Geng, Hongbo, Rui, Xianhong, Yan, Qingyu
Other Authors: School of Materials Science and Engineering
Format: Journal Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/163798
Description
Summary:With the excessive consumption of non-renewable resources, the exploration of effective and durable materials is highly sought after in the field of sustainable energy conversion and storage system. In this aspect, metal-organic frameworks (MOFs) are a new class of crystalline porous organic-inorganic hybrid materials. MOFs have recently been gaining traction in energy-related fields. Owing to the coordination flexibility and multiple accessible oxidation states of vanadium ions or clusters, Vanadium-MOFs (VMOFs) possess unique structural characteristics and satisfactory electrochemical properties. Furthermore, V-MOFs derived materials also exhibit superior electrical conductivity and stability when used as electrocatalysts and electrode materials. This review summarizes the research progress of V-MOFs (inclusive of pristine V-MOFs, V/M-MOFs and POV-based MOFs) and their derivatives (vanadium oxides, carboncoated vanadium oxide, vanadium phosphate, vanadate, and other vanadium doped nanomaterials) in electrochemical energy conversion (water splitting, oxygen reduction reaction) and energy storage (supercapacitor, rechargeable battery). Future possibilities and challenges for V-MOFs and their derivatives in terms of design and synthesis are discussed. Lastly, their applications in energy-related fields are also highlighted.