Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications
In the past, analysis and optimization is tedious and difficult due to the nonlinear behaviour of the switched reluctance motor (SRM). However, advancing forward, with advanced modelling software with stronger computation power and algorithms, the Switched Reluctance Motor (SRM) has become easier to...
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project (FYP) |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/167723 |
_version_ | 1826120696834555904 |
---|---|
author | Lee, Chao Ming |
author2 | Christopher H. T. Lee |
author_facet | Christopher H. T. Lee Lee, Chao Ming |
author_sort | Lee, Chao Ming |
collection | NTU |
description | In the past, analysis and optimization is tedious and difficult due to the nonlinear behaviour of the switched reluctance motor (SRM). However, advancing forward, with advanced modelling software with stronger computation power and algorithms, the Switched Reluctance Motor (SRM) has become easier to explore and optimized. This project aims to use a finite element analysis (FEA) to study the SRM.
This report first explores and explains the fundamentals of the switched reluctance motor (SRM), such as the basic working principle, topology and configurations. Newer topology of the SRM, the novel SRM has been briefly looked at due to its superior torque performance as compared to the conventional SRM. Finally, the multi-teeth SRM is investigated as it shows even more promising performance to the novel SRM.
The design aspect such as the parameters and considerations were first highlighted, concerning practicality, feasibility, efficiency, noise, heat dissipation, and fair evaluation. Conventional SRM were first tested and simulated in a finite element analysis software (JMAG) for conclusive results. Multiple models of the two teeth per stator pole was designed and simulated against one another for the best average torque evaluation. The torque performance gets better as the number of rotor poles increases; however, a “knee point” in the curve is encountered. |
first_indexed | 2024-10-01T05:20:40Z |
format | Final Year Project (FYP) |
id | ntu-10356/167723 |
institution | Nanyang Technological University |
language | English |
last_indexed | 2024-10-01T05:20:40Z |
publishDate | 2023 |
publisher | Nanyang Technological University |
record_format | dspace |
spelling | ntu-10356/1677232023-07-07T19:26:49Z Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications Lee, Chao Ming Christopher H. T. Lee School of Electrical and Electronic Engineering chtlee@ntu.edu.sg Engineering::Electrical and electronic engineering In the past, analysis and optimization is tedious and difficult due to the nonlinear behaviour of the switched reluctance motor (SRM). However, advancing forward, with advanced modelling software with stronger computation power and algorithms, the Switched Reluctance Motor (SRM) has become easier to explore and optimized. This project aims to use a finite element analysis (FEA) to study the SRM. This report first explores and explains the fundamentals of the switched reluctance motor (SRM), such as the basic working principle, topology and configurations. Newer topology of the SRM, the novel SRM has been briefly looked at due to its superior torque performance as compared to the conventional SRM. Finally, the multi-teeth SRM is investigated as it shows even more promising performance to the novel SRM. The design aspect such as the parameters and considerations were first highlighted, concerning practicality, feasibility, efficiency, noise, heat dissipation, and fair evaluation. Conventional SRM were first tested and simulated in a finite element analysis software (JMAG) for conclusive results. Multiple models of the two teeth per stator pole was designed and simulated against one another for the best average torque evaluation. The torque performance gets better as the number of rotor poles increases; however, a “knee point” in the curve is encountered. Bachelor of Engineering (Electrical and Electronic Engineering) 2023-06-03T13:02:19Z 2023-06-03T13:02:19Z 2023 Final Year Project (FYP) Lee, C. M. (2023). Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/167723 https://hdl.handle.net/10356/167723 en A1059-221 application/pdf Nanyang Technological University |
spellingShingle | Engineering::Electrical and electronic engineering Lee, Chao Ming Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications |
title | Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications |
title_full | Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications |
title_fullStr | Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications |
title_full_unstemmed | Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications |
title_short | Optimal design and analysis of multi-tooth switched reluctance motors for direct-drive applications |
title_sort | optimal design and analysis of multi tooth switched reluctance motors for direct drive applications |
topic | Engineering::Electrical and electronic engineering |
url | https://hdl.handle.net/10356/167723 |
work_keys_str_mv | AT leechaoming optimaldesignandanalysisofmultitoothswitchedreluctancemotorsfordirectdriveapplications |