Time series domain adaptation via contrastive adversarial domain disentangled network
Unsupervised domain adaptation is a machine learning framework to transform information learned from one or several source domains with many annotated samples to unlabeled target domains. A typical unsupervised domain adaptation method is typically designed base on visual data. Solutions on time se...
Autor principal: | Huang, Xinyi |
---|---|
Outros Autores: | Sinno Jialin Pan |
Formato: | Thesis-Master by Research |
Idioma: | English |
Publicado em: |
Nanyang Technological University
2023
|
Assuntos: | |
Acesso em linha: | https://hdl.handle.net/10356/168752 |
Registros relacionados
-
Contrastive adversarial domain adaptation for machine remaining useful life prediction
por: Mohamed Ragab, et al.
Publicado em: (2022) -
Multi-level adversarial network for domain adaptive semantic segmentation
por: Huang, Jiaxing, et al.
Publicado em: (2022) -
Combating adversaries in network-structured security domains
por: Guo, Qingyu
Publicado em: (2018) -
Unsupervised domain adaptation in the wild via disentangling representation learning
por: Li, Haoliang, et al.
Publicado em: (2022) -
Multicomponent adversarial domain adaptation: a general framework
por: Yi, Chang'an, et al.
Publicado em: (2023)